Física Experimental IV – 1º Semestre de 2015

Experimento 4

Ondas Eletromagnéticas

Objetivos

- Reconhecer a influência da radiação eletromagnética na rotação do radiômetro de Crookes.
- Reconhecer que um corpo aquecido emite radiação na faixa do infravermelho.
- Medir a temperatura de uma superfície emissora utilizando um termômetro para infravermelho.
- Reconhecer a dependência da cor e/ou acabamento de uma superfície na emissão de radiação no infravermelho.
- Comparar a taxa de emissão de radiação das diversas superfícies conforme sua cor e/ou acabamento.

Material necessário

- Fonte emissora de luz
- Radiômetro de Crookes
- Cubo de radiação térmica
- Termômetro de contato
- Termômetro para infravermelho
- Aquecedor
- Becker

Parte 1 – Rotação das pás de um radiômetro de Crookes

1- Posicione o radiômetro de Crookes em frente à fonte emissora de luz e ligue a lâmpada.

Disserte a cerca do que foi observado com esse experimento. Inclua em seu texto as respostas às seguintes perguntas:

- O que você conclui sobre a interação da radiação das ondas eletromagnéticas nas pás do radiômetro de Crookes?
- Qual o motivo da rotação da ventoinha?
- Como você faria para aumentar a velocidade de rotação da ventoinha?

Parte 2 – Emissividade do corpo e radiação eletromagnética

- 1 Aqueça água até a ebulição.
- 2 Encha o cubo de radiação térmica (cubo de Leslie).
- 3 Feche o cubo e coloque o termômetro de contato no orifício existente na rolha.
- 4 Aguarde o equilíbrio térmico do sistema (aproximadamente 2 min).
 - Preencha a tabela abaixo utilizando o termômetro de infravermelho.

Temperatura	Temperatura da	Temperatura da	Temperatura da	Temperatura da
interna do cubo	face preta	face branca	face fosca	face polida
~70 °C				
~65 °C				
~60 °C				
~55 °C				
~50 °C				
~45 °C				
~40 °C				

• Admite-se que a taxa de emissão da face preta seja 100% (emissor ideal), assim, podese associar a temperatura da face preta à taxa de emissão 100%. Com isso, preencha a tabela abaixo:

Temperatura	Taxa de emissão	Taxa de emissão	Taxa de emissão	Taxa de emissão
interna do cubo	da face preta	da face branca	da face fosca	da face polida
~70 °C				
~65 °C				
~60 °C				
~55 °C				
~50 °C				
~45 °C				
~40 °C				

e = ___(taxa de emissão da superfície / unidade de área) ___
(taxa de emissão da superfície ideal / unidade de área)

[&]quot;A emissividade (e) representa a razão entre a taxa de emissão de uma dada superfície e a taxa de emissão de uma superfície emissora ideal, ambas de mesma área e à mesma temperatura."

• Preencha a tabela abaixo com os valores obtidos:

Temperatura	Emissividade da	Emissividade da	Emissividade da	Emissividade da
interna do cubo	face preta	face branca	face fosca	face polida
~70 °C				
~65 °C				
~60 °C				
~55 °C				
~50 °C				
~45 °C				
~40 °C				

• Faça um gráfico de emissividade aparente versus a temperatura da face do cubo.

"A Potência irradiada por uma superfície é diretamente proporcional à área da superfície, à quarta potência da temperatura da superfície emissora e depende da natureza da superfície do corpo emissor."

$$P = e \sigma A T^4$$

P = potência irradiada (W)

e =emissividade (adimensional)

 σ = constante de Stefan-Boltzmann = 5,6703 x 10⁻⁸ W/m².K⁴

A =área da superfície emissora (m²)

T = temperatura absoluta da superfície emissora (K)

• Preencha a tabela abaixo com os valores obtidos:

Temperatura	Potência	Potência	Potência	Potência
interna do cubo	irradiada da face	irradiada da face	irradiada da face	irradiada da face
	preta	branca	fosca	polida
~70 °C				
~65 °C				
~60 °C				
~55 °C				
~50 °C				
~45 °C				
~40 °C				

• Comente todos estes resultados e diga se estão de acordo com o esperado.