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ABSTRACT: Biodiesel is becoming a promising fuel in many
markets in the world for being a renewable energy source and
for not requiring significant adaptation in existing diesel engines.
It is biodegradable and its polluting gas emissions are less harmful
to the environment. Transesterification is used for the biodiesel
synthesis at supercritical conditions using triacylglycerols and
solvents in a heterogeneous reaction. The Peng−Robinson (PR),
the volume-translated Peng−Robinson (VT-PR), and the perturbed
chain statistical associating fluid theory (PC-SAFT) equations of
state were using to predict the fluid phase behavior of systems
containing solvents and components present in the synthesis
of biodiesel at supercritical conditions. Two pure component
parameters for the VT-PR equation, N and k3, and the five pure
component parameters for the PC-SAFT equation, m, σ, and ε
as well as the associating parameters κAiBj and εAiBj, were predicted based on the vapor pressures and the saturated liquid volumes.
Results were compared with experimental data presented in the literature, considered thermodynamically consistent, and it was
confirmed that noncubic equations of state are more accurate than cubic equations of state. Thermodynamic modeling was also
compared with the thermodynamic simulation using artificial neural networks (ANN) and molecular descriptors at different
architectures. Results, in terms of deviations of bubble pressures of and vapor phase composition, predicted by the optimum
ANN model are slightly more efficient than the ones obtained by the thermodynamic models, mainly the PC-SAFT equation of
state.

1. INTRODUCTION
1.1. Biodiesel. Many substitutes for diesel fuel have been

studied recently, such as the use of vegetable oil or mixtures
between oil and diesel, microemulsions of vegetable oil in diesel,
and the synthesis of new fuels with pyrolysis and transesteri-
fication.1 Due to its similar properties in comparison with the
diesel from petroleum, biodiesel, obtained in transesterification
reactions, is considered the most promising substitute.2 The use
of biodiesel is advantageous to the environment in comparison
with the use of common diesel, because biodiesel has few sulfur-
based and aromatic compounds, it is biodegradable, and because
of the fact that carbon emitted in its combustion is balanced with
carbon absorbed during the growth of the plants that provide
oil.3

Biodiesel can be produced with the use of homogeneous
catalysts and without them. The method without catalysts is
based on the properties of the solvent in supercritical conditions
so that, at appropriate temperature and pressure, the solubility of
the solvent is reduced to near the value of the solubility of the
triacylglycerol, permitting the formation of a homogeneous
phase which will increase the reaction efficiency.3 When the
reagents are in a single phase in the reactor, there is no mass
transference between interfaces to limit the reaction conversion.4

For the synthesis of the biodiesel process, in which many
compounds are in equilibrium in the system, the prediction of
the behavior of multicomponent systems tends to be useful for a

better efficiency of the process or for a better selection of raw
material that will be used. However, first it is necessary that the
mathematical model fits into simple systems, such as binary
systems.5

In this work, the term “biodiesel component” is used to refer
to fatty acid, fatty acid ester, triacylglycerol, or glycerol and
“biodiesel system” is a binary system involving a biodiesel
component and supercritical solvent.

1.2. Artificial Neural Networks (ANN). Based on behavior
of natural neural networks, artificial neural networks are
constituted by layers that consist of a certain number of units,
similar to neurons, called nodes. The information introduced in
the first layer (stimulus) is transmitted ahead through connec-
tions (links) between nodes6 (Figure 1). Different architectures
are obtained according to the topology and search algorithms used.
There are four elements present in a typical ANN: (1) a node as a
unit that activates when a input signal is received, (2) nodes
interconnected between them, (3) a activation function inside a
node to transform input into output, and (4) a learning function
to manage weights of input−output pairs.7 The last element is
important to minimize certain criterion using a set of allowed
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models. The Levenberg−Marquardt back-propagation training
algorithm, available in MatLab, is the most employed search
algorithm for the learning process.8

1.3. Molecular Descriptors (MD). Molecular descriptors
are fundamental tools in several areas such as quality control,
pharmaceutical sciences, health research, chemistry, and other
more. They translate some properties of amolecule into numbers
allowing an easy mathematical treatment of chemical informa-
tion that is previously encoded into symbolic representation.
Through logic and mathematical functions, the codes of the
molecules are transformed to numerical values by standardized
experiments.9 Predominantly, MD are classified as topological
indexes, and constitutional, geometrical, and thermodynamic
descriptors among many existing classifications. All of them
consider attributes such as shape, number of atoms, atom type,
molecular size, bound count, ring count, molecular weight, and
connectivity of atoms in molecules, along with others. Thermo-
dynamic descriptors, commonly, cover chemical properties in
terms of chemical behavior based on heat formation, molar
refractivity, etc.10

One of the most important programs for calculating MD is
Dragon 7.0.11 It contains more than 5000 molecular descriptors
divided into 30 logical blocks allowing an easy retrieval of MD.
In this study, Dragon 7.0 was used to obtain MD of biodiesel
components. The last version of this computer program allows
calculating disconnected structures, i.e., salts, mixtures, ionic
liquids, metal complexes, and sequences of metabolites that can
be generated by substances. To generate MD, Dragon 7.0 requires
determined files to describe the molecular structure and are
obtained by specific chemical drawing programs. The most used
format for these files is called SMILES (.smi).
1.4. SMILES Codes. SMILES (Simplified Molecular Input

Line Entry System) is a line notation that contains the same
information on an extended connection table, in a compact way,
to represent a chemical structure. SMILES codes translate three-
dimensional chemical structure (atoms, bonds, etc.) in a sequence
of symbols that is recognized by computer software. SMILES
notation is used to enter a chemical structure into EPI Suite
estimation programs and ECOSAR. Several software programs
are available to translate a chemical structure into SMILES.12,13

In this work, first, the pure component parameters of the
VT-PR and PC-SAFT models were predicted using the vapor
pressures and the saturated liquid volumes. Second, the thermo-
dynamic consistency was applied to the experimental data. Data,
considered thermodynamically consistent, were used in the
thermodynamic modeling. Third, the fluid phase behaviors, in
terms of performance obtained by the thermodynamic modeling

and the thermodynamic simulation, were compared. For the
thermodynamic modeling, the Peng−Robinson, the volume-
translated Peng−Robinson, and the perturbed chain statistical
associating fluid theory equations of state were used to describe
the vapor−liquid equilibrium in terms of deviations in bubble
pressure and the vapor phase composition. The noncubic EoS
(PC-SAFT) was more accurate than the cubic equations of state
(PR and VT-PR). For the thermodynamic simulation, the
proposal of the present research includes using ANNwith several
architectures with the following independent variables: critical
properties of the biodiesel components and supercritical sol-
vents, temperature, and liquid phase composition. Due to the
complexity of the fatty acid esters, it was necessary to use
molecular descriptors for these solutes, obtained with Dragon
7.0, as independent variables. Dependent variables in the
simulation were system pressure and the vapor phase com-
position. It is necessary to emphasize that, although the sim-
ulation using artificial neural networks is a well-known tech-
nique, in the case of the fluid behavior of the vapor−liquid
equilibrium (VLE), there are no research works using ANN
and molecular descriptors for studying the fluid behavior of the
VLE of binary systems involving components present in the
biodiesel.

2. METHODOLOGY
2.1. Thermodynamic Models. 2.1.1. Peng−Robinson (PR)

Equation of State. The PR EoS14 can be written with the
following form:

=
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where kij and lij are adjustable binary parameters. Pure com-
ponent parameters (ai and bi) are calculated from pure com-
ponent critical properties:
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2.1.2. Volume-Translated Peng−Robinson Equation of
State. The accuracy of Peng−Robinson equation of state can
be improved using a term ti to correct the calculated value of
volume, as is shown in eq 6.

= +V V ticalc (6)

With this new parameter, the equation of Peng−Robinson with
the volume-translated term (PR-VT)15 becomes
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Figure 1. Scheme of artificial neural networks.
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VT-PR EoS constants, a and b, are calculated with the same
mixing rules (vdW2) and their combining rules in the same way
as in the Peng−Robinson EoS. Constant t is calculated as

∑=t x t
i

c

i i
(8)

Pure component parameters ai and bi are calculated by eq 4.
Parameters α(Tr)i, mi, and ti are defined as
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where Tr,i is the reduced temperature of component i; N and k3
are the pure component parameters obtained with vapor
pressure and specific volume of saturated liquid data. Parameters
k1 and k2 are calculated as
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2.1.3. Perturbed Chain Statistical Associating Fluid Theory
(PC-SAFT). PC-SAFT EoS16,17 calculates the residual Helmholtz
energy, a ̃res, from the summation of three terms: a reference hard-
sphere chain contribution (a ̃hc), a perturbation contribution,
a ̃pert, and an associating contribution, a ̃assoc, where a ̃ = A/NkT.
The hard-sphere chain contribution was provided by Chapman
and co-workers.18,19 It was based on the first-order thermody-
namic perturbation theory and depends on the radial pair
distribution function for segments in the hard-sphere system
(ghs) and on the mean segment number (m̅), and it is a function
of m, the number of segments per chain. The hard-sphere
contribution (a ̃hs) and the radial distribution function (gij

hs)
depend also on the temperature-dependent segment diameter
(di), which depends directly on the segment diameter (σ) and the
depth pair potential (ε), according to

σ
ε
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The perturbation contribution20 is calculated from the first
(a ̃1) and second-order (a2̃) perturbation terms, which contain
mixing rules in the form of
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Conventional combining rules are used to determine the cross
parameters:

σ σ σ= +1
2

( )ij ii jj (16)

ε ε ε= − k(1 )ij ii jj ij (17)

where kij is an adjustable binary parameter. Here,mi, σii, and εii are
the pure component parameters of the component i for the
PC-SAFT model. When associating compounds are used, it is
necessary to add a term to take in account the contribution due to
association (a ̃assoc),21 which contain two other pure component
parameters: the associating volume parameter, κAiBj, and the asso-
ciating energy parameter, εAiBj. Specific details of the PC-SAFT
EoS can be found in the scientific literature.21,22

2.1.4. Fluid Phase Behavior of the Vapor−Liquid Equili-
brium. For obtaining an appropriate thermodynamic model
for binary systems, it is fundamental to evaluate the fluid phase
behavior ofmixtures in the reactive environment, besides permitting
the calculations of their properties with their composition in a
certain moment of the process. Considering, in the reactor to
biodiesel production, in which will exist phase equilibrium
between the components, the thermodynamic model proposed
will be based on the fugacity equality between the liquid and
vapor phases to a certain component i, according to eq 18.

̂ = ̂f fi i
L V

(18)

The fugacity of each phase is calculated from the ϕ−ϕ
approach:23

ϕ̂ = ̂f x Pi i i
L L

(19)

ϕ̂ = ̂f y Pi i i
V V

(20)

where xi and yi are the fluid compositions in liquid and vapor
phases, respectively. ϕ̂i is the fugacity coefficient of the compo-
nent i in liquid or vapor phase and can be obtained from the
fundamental relationship:24
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depends on the EoS. In eq 21, n is the mole

number, P is the pressure, T is the temperature, V is the molar
volume, and Z is the compressibility factor. In this work, the
fugacity coefficient was calculated numerically by using finite
difference and numerical integration methods.21,25

2.1.5. Thermodynamic Consistency. Testing the thermody-
namic consistency of experimental data is necessary before any
thermodynamic modeling process, due to some differences found
between data of a given system studied under the same condi-
tions by different researchers.26,27 Based on the Gibbs−Duhem
equation in the most cases, different forms of manipulating this
equation create different tests.28−30

In this work, an integral or area test26 from the integral form of
the Gibbs−Duhem equation, eq 22, is used because it is a suitable
test for isothermal systems with solute present in very small
fractions in the vapor phase and under higher pressures.
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where y2 is the vapor molar fraction of the solute. The com-
pressibility factor, Z, of the vapor phase is used and, with the
fugacity coefficients, ϕ̂i, is calculated by using the PR EoS14

combined with the van der Waals mixing rule with one binary
interaction parameter, kij. For the calculations, kij was adopted
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equal to zero, so that the mixing rule did not influence in the
treatment of the thermodynamic data. Each side of eq 22 will
generate an area term calledAP, the term generated by the left side,
and Aϕ, the term generated by the right side, as shown in eq 23.

∫
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From these relationships, the individual percentage, %ΔAi,
shown in eq 24, correlates the calculated areas for each experi-
mental data set.

Δ =
−ϕ⎛

⎝⎜
⎞
⎠⎟A

A A

A
% 100 P

P (24)

In this case, to determine the thermodynamic consistency of the
data, the adopted criterion was that a set of experimental data will
be considered consistent if %ΔAi is within the range of values
−20 to 20%, while it will be considered inconsistent for values
out of the same interval. Numerical method techniques were
used to solve eq 23; that is, one point depended on the previous
one so that the given segment generated the area corresponding
to the integral. Therefore, the test was performed on the experi-
mental data arranged in ascending order considering that the first
data was consistent. Only the data considered thermodynami-
cally consistent will proceed for thermodynamic modeling.
2.1.6. Thermodynamic Simulation with Artificial Neural

Networks.The fluid phase behavior of binary systems containing
compounds present in the production of biodiesel was analyzed
by means of the bubble point method at high pressures to study
the capability of ANN in learning, testing, and predicting steps,
with the dependent variables of system pressure and vapor phase
composition. Independent variables were the critical properties
of compounds involved in biodiesel systems, system temper-
ature, and liquid phase composition (Figure 2). Due to the uncer-
tainties of some critical properties of some fatty acid esters found
in the literature, molecular descriptors were used to improve the
accuracy of the independent variables. First, the SMILES code
for each molecule of the biodiesel component was found.
Second, using Dragon 7.0,11 numeric values for the 20 molecular
descriptors (Table 1) were obtained.

For the learning, testing, and predicting of the fluid phase
behavior of biodiesel systems, a spreadsheet file (MS Excel) with
six worksheets, each one with a special function, was created.
The first, third, and fifth worksheets for the learning, testing,
and prediction steps, respectively, contain the independent
variables. The second, fourth, and sixth worksheets for the learn-
ing, testing, and prediction steps, respectively, contain the
dependent variables. Data and the number of data are different
for all the worksheets. A computer program for two dependent
variables, in MatLab, was developed by our research group31 that
interacts with each worksheet of the spreadsheet file. A friendly
version of this software can be downloaded from the following
link: http://easyann.gvilella.me/.
In the learning step, the computer program reads the input

data, sets the architecture that normally involves a back-propa-
gation feed-forward neural network containing a determined
number of layers and generates the weight and bias matrices, and
stores such data for the testing step. In the testing step, the
computer program reads the weight and bias matrices and the
data of the third worksheet which contains the independent
variables of biodiesel systems to be learned, and run a number of
times, defined by the user, storing all the results in the fourth
worksheet. From these results, the average absolute deviation
and the maximum absolute deviation are evaluated and the user
chooses the best run in terms of the lowest maximum absolute
deviations for the two dependent variables (system pressure
and vapor phase composition). In the prediction step, with the
best run chosen, the computer program predicts the values
of the dependent variables for the data of the fifth worksheet.
Results of the prediction step are stored in the sixth worksheet.
In this worksheet, it is possible to compare with the experimental
data if the prediction process was successful for the selected
architecture. From here, it is possible to predict the fluid phase
behavior of biodiesel systems from unknown values of inde-
pendent variables, without the need to do more experimental
trials.
In this form, for obtaining the best architecture, several network

architectures were studied following the procedure described
above.

3. RESULTS AND DISCUSSION

In this work, the modeling of the thermodynamic behavior of the
vapor−liquid equilibrium of several binary systems including

Figure 2. Architecture for artificial neural networks.
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fatty acid esters and supercritical solvents using the PR, VT-PR,
and PC-SAFT equations of state, and the thermodynamic simu-
lation by using artificial neural networks withmolecular descriptors,
were the main goals.
3.1. Physical Characteristics of Biodiesel Systems

Studied. Biodiesel systems studied for modeling the fluid phase
behavior are shown in Table 2, where NP,ΔT,ΔP,Δx1, andΔy1
represent the number of experimental points, temperature,
pressure, and liquid and vapor phase compositions (molar fractions),
respectively.

3.2. Pure Component Parameters. In Table 3, the critical
properties and the acentric factor that are used in the Peng−
Robinson and the VT-PR equations of state are presented,
while the parameters N and k3 for the VT-PR EoS are shown in
Table 4, which also shows the references of the vapor pressure
and density data used to calculate them. Pure component
parameters of the PC-SAFT equation of state are also shown in
Table 4.
VT-PR and PC-SAFT pure component parameters were

obtained by fitting pure component data. Data for vapor pressure

Table 2. Physical Characteristics of Binary Systems Involving Biodiesel Components

system NP ΔT [K] ΔP [MPa] Δx1 Δy1
Solvent + Triacylglycerol

CO2 + tricaprilin32 10 333.2−353.2 5.33−25.00 0.6915−0.9492 0.9887−0.9999
CO2 + tripalmitin33 9 333.0−353.0 10.00−50.00 0.6200−0.9280 0.9981−1.0000
CO2 + tristearin33 9 333.0−353.0 20.00−50.00 0.5870−0.9140 0.9987−1.0000
CO2 + triolein33 8 333.0−353.0 20.00−50.00 0.8360−0.9240 0.9988−1.0000
CO2 + trilaurin32 6 353.2 10.28−31.80 0.8189−0.9999 0.9978−1.0000
methanol + triolein34 16 473.0−503.0 2.86−5.49 0.8207−0.9849 0.9995−1.0000

Solvent + Fatty Acid
CO2 + caproic acid32 10 313.2−353.2 2.72−15.88 0.1709−0.9110 0.9644−0.9999
CO2 + lauric acid32 16 333.2−353.2 2.57−27.65 0.2471−0.8929 0.9593−0.9999
CO2 + palmitic acid32 7 353.2−373.2 13.60−30.52 0.5771−0.8082 0.9973−0.9999

Solvent + Fatty Acid Ester
CO2 + ethyl stearate35 29 313.2−333.2 1.47−18.26 0.3270−0.9120 0.9850−1.0000
CO2 + ethyl oleate35 37 313.2−333.2 1.14−18.62 0.1950−0.9610 0.9770−1.0000
CO2 + ethyl linoleate35 32 313.2−333.2 1.97−16.97 0.2990−0.9470 0.9810−1.0000
CO2 + DHA ethyl ester35 26 313.2−333.2 1.87−19.22 0.4826−0.9040 0.9878−0.9999
CO2+ EPA ethyl ester35 33 313.2−333.2 2.01−19.04 0.5081−0.9232 0.9806−0.9999
ethanol + ethyl myristate36 19 493.0−543.0 2.11−6.93 0.4520−0.9280 0.9858−0.9998
ethanol + ethyl laurate36 22 493.0−543.0 2.23−7.09 0.4390−0.9410 0.9657−0.9996
methanol + methyl laurate37 20 493.0−543.0 2.16−8.49 0.4330−0.8950 0.9800−0.9999
methanol + methyl myristate37 19 493.0−543.0 2.41−8.42 0.3900−0.8980 0.9910−0.9999
methanol + C18 methyl esters38 15 523.0−573.0 2.45−11.45 0.4650−0.9160 0.9860−1.0000

Solvent + Glycerol
ethanol + glycerol39 22 493.0−573.0 2.27−8.78 0.3160−0.8890 0.9310−0.9999
methanol + glycerol39 22 493.0−573.0 3.03−11.01 0.4310−0.9650 0.9630−0.9999

Table 1. Molecular Descriptors from Dragon 7.0 used in this work

molecular descriptor name subblock block

MW molecular weight

basic descriptors constitutional indexes
AMW average molecular weight
nH number of hydrogen atoms
nC number of carbon atoms
nStructures number of disconnected structures
Pol polarity number distance-based indexes topological indexes
X1Av average valence connectivity index of order 1 Kier−Hall molecular connectivity indexes

connectivity indexes
X1SOL solvation connectivity index solvation connectivity indexes
XMOD modified Randic index

Randic-like connectivity indexes
RDCHI reciprocal distance sum Randic-like index
P_VSA_p_1 P_VSA-like polarizability, bin 1 polarizability P_VSA-like descriptors
nHDon number of donor atoms for H-bonds

basic descriptors functional group counts
nHAcc number of acceptor atoms for H-bonds (N, O, F)
nRCOOH number of carboxylic acids (aliphatics)
nRCOOR number of esters (aliphatics)
SAacc surface area of acceptor atoms from P_VSA-like descriptors

basic descriptors molecular properties
SAtot surface area (total)
VvdwMG van der Waals volume for McGowan volume
PDI packing density index
TPSA(ToT) topological polar surface area using N, O, S, P polar contributions
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and liquid molar volumes were considered. The minimization
function used in the modified likelihood maximum52 is

∑
ρ ρ

ρ
=

| − |
+

| − |

=
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calc
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exp
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where NP is the number of experimental point data for a given
system. The fitted characteristic parameters are then used to

calculate the average deviation from the experimental saturated
liquid molar volume and saturated vapor pressure:
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In these equations, “exp” refers to vapor pressure and liquid
molar volume data (Table 4). Since the accuracy of the fitting is
better over a restricted data range, and since often data and
thermodynamic functions at only low and moderate pressures
are needed for engineering work, the characteristic parameters
are adjusted over an adequate pressure and temperature range.
The computational subroutines which calculate EoS pure com-
ponent parameters have been written considering the possibility
of multiple solutions by searching for the optimum parameters
over a wide interval of feasible solutions. This method was applied
in previous works and the results were very satisfactory.50−52

3.3. Thermodynamic Consistency. The results of the
thermodynamic consistency test of experimental data studied
attended the criteria adopted in the most cases as shown in
Table 5,53 where NPTC is the number of points thermodynami-
cally consistent. The whole data from binary systems containing
methanol and ethanol were considered thermodynamically
consistent, while some experimental data from systems containing
carbon dioxide did not attend the interval adopted as criterion.

3.4. Thermodynamic Modeling. For the thermodynamic
modeling of the fluid phase behavior by using the PR and VT-PR
equations of state, the two binary interaction parameters, kij and
lij, are used to adjust the experimental data points with the
calculated points. For the PC-SAFT EoS, only one binary inter-
action parameter, kij, is used. These parameters are dependent on
the temperature and may be expressed by functions with two

Table 3. Critical Properties of the Components Studied in
This Work

component Tc [K] Pc [MPa] w

tricaprilin40 793.4 0.74 1.050
tripalmitin40 923.4 0.37 1.630
tristearin40 945.2 0.33 1.730
triolein40 954.1 0.36 1.686
trilaurin40 869.8 0.49 1.370
caproic acid41 660.2 3.31 0.730
lauric acid41 743.0 1.94 0.880
palmitic acid41 785.0 1.51 0.983
ethyl stearate42 775.8 1.12 0.961
ethyl oleate42 771.0 1.19 0.992
ethyl linoleate42 785.9 1.12 1.008
DHA ethyl ester43 867.1 1.01 0.990
EPA ethyl ester43 833.8 1.18 1.013
ethyl myristate42 744.3 1.40 0.862
ethyl laurate42 719.1 1.60 0.787
methyl laurate44 712.0 1.74 0.692
methyl myristate44 740.0 1.43 0.736
methyl stearate44 788.0 1.12 0.864
glycerol41 850.0 7.50 0.513
methanol41 512.6 8.01 0.566
ethanol41 513.9 6.30 0.649
carbon dioxide41 304.1 7.38 0.228

Table 4. Pure Component Parameters for the VT-PR and PC-SAFT Models

VT-PR PC-SAFT

component N k3 ΔP Δv m/MW (mol−1) σ (1010 m) ε/k (K) kAiBj εAiBj/k (K) ΔP Δv

tricaprylin45 3.1500 −0.2062 6.61 2.73 11.2365 3.7812 261.25 − − 1.45 0.12
tripalmitin45,46 5.8451 −2.8826 1.84 6.42 14.8521 3.8841 264.87 − − 1.08 0.09
tristearin45,46 6.3987 −3.0225 2.91 9.58 20.5218 3.6548 258.45 − − 1.34 0.08
triolein41,45 6.6467 −3.2452 1.36 9.73 22.4522 3.5478 259.74 − − 0.89 0.09
trilaurin45,46 3.6511 −2.4155 5.59 5.14 12.3654 3.5871 263.85 − − 1.65 0.13
caproic acid41 0.4187 −0.0802 0.55 2.05 3.9314 3.5542 278.84 0.0008 4192.74 1.13 0.08
lauric acid41 0.6282 −0.1275 0.19 1.50 5.2214 3.6452 273.65 0.0012 4215.25 1.54 0.07
palmitic acid41 0.6024 0.0252 0.28 0.51 6.8742 3.6145 270.25 0.0010 4082.23 2.01 0.09
ethyl stearate47,48 1.9262 0.0030 0.00 0.20 10.4875 3.6012 233.74 − − 1.54 0.06
ethyl oleate47,48 1.1753 0.0565 0.00 0.25 8.1748 3.8245 259.25 − − 0.87 0.07
ethyl linoleate47,49 −0.2543 −0.0098 0.00 0.44 9.8123 3.6354 242.78 − − 0.93 0.05
DHA ethyl ester50 −0.7070 −0.2306 0.06 0.36 10.2548 3.7525 248.85 − − 1.13 0.06
EPA ethyl ester50 −1.0792 −0.0724 0.01 0.07 9.8952 3.7012 251.23 − − 1.32 0.08
ethyl myristate47,48 0.0431 −0.1892 0.00 0.51 7.4951 3.8123 251.74 − − 0.87 0.04
ethyl laurate47,48 −0.0690 −0.2525 0.00 0.53 6.8021 3.7548 251.40 − − 0.54 0.07
methyl laurate48,51 0.2968 −0.0764 0.64 1.67 6.5048 3.7285 251.85 − − 1.14 0.09
methyl myristate48,51 0.2847 −0.2608 0.00 0.23 7.0942 3.7815 252.48 − − 1.23 0.13
methyl stearate48,51 0.3779 −0.3799 0.12 0.67 8.8541 3.7748 251.07 − − 0.87 0.11
glycerol41 0.6069 0.1826 0.13 0.50 1.5815 4.1560 552.74 0.0004 4359.44 0.69 0.04
methanol15,41 0.0322 −0.0443 − − 1.5023 3.2105 189.45 0.0347 2875.52 1.32 0.05
ethanol15,41 0.2076 0.0269 − − 2.3541 3.1865 197.51 0.0329 2664.03 0.89 0.02
carbon dioxide15,41 0.1133 0.2900 − − 2.0514 2.8145 168.74 − − 0.54 0.00
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constants, A and B. In this work, for the thermodynamic
modeling, eqs 28 and 29 presented the best adjustment, for all
binary systems, the dependence of the binary interaction param-
eter with temperature.

= +k A
B
Tij (28)

= ′ + ′
l A

B
Tij (29)

The values of A and B found for the parameters kij and
lij for each system and the vapor phase composition error
(Δy1) and the system pressure error (ΔP) using the PR,
VT-PR, and PC-SAFT equations of state are shown in

Table 5. Results for the Thermodynamic Consistency of Biodiesel Systems

system T [K] NP NPTC system T [K] NP NPTC

CO2 + tricaprilin 333.2 4 4 methanol + triolein 473.0 4 4
353.2 6 6 483.0 4 4

CO2 + tripalmitin 333.0 4 1 493.0 4 4
353.0 5 3 503.0 4 4

CO2 + tristearin 333.0 5 4 methanol + methyl laurate 493.0 7 7
353.0 4 2 523.0 6 6

CO2 + triolein 333.0 4 1 543.0 7 7
353.0 4 3 methanol + methyl myristate 493.0 6 6

CO2 + trilaurin 353.2 6 6 523.0 6 6
CO2 + caproic acid 313.2 4 4 543.0 7 7

353.2 6 6 methanol + methyl stearate 523.0 5 5
CO2 + lauric acid 333.2 10 10 548.0 5 5

353.2 6 6 573.0 5 5
CO2 + palmitic acid 353.2 3 3 methanol + glycerol 493.0 6 6

373.2 4 4 523.0 5 5
CO2 + ethyl stearate 313.2 9 9 543.0 6 6

323.2 9 9 573.0 5 5
333.2 11 11

CO2 + ethyl oleate 313.2 8 8
323.2 13 13 ethanol + glycerol 493.0 6 6
333.2 16 16 523.0 5 5

CO2 + ethyl linoleate 313.2 8 7 543.0 6 6
323.2 11 11 573.0 5 5
333.2 13 13 ethanol + ethyl laurate 493.0 6 6

CO2 + DHA ethyl ester 313.2 11 10 523.0 8 8
323.2 9 9 543.0 8 8
333.2 7 7 ethanol + ethyl myristate 493.0 6 6

CO2 + EPA ethyl ester 313.2 10 9 523.0 6 6
323.2 10 10 543.0 7 7
333.2 13 13

Table 6. Results of Binary Systems: Supercritical Solvent + Triacylglycerol

kij lij

system EoS A B A′ B′ Δy1 ΔP

CO2 + tricaprilin PR 0.0599 −0.0210 0.1677 −0.0071 0.44 2.84

PR-VT 0.0171 0.0113 0.0996 −0.0028 0.44 2.52

PC-SAFT 0.2577 −61.1251 − − 0.08 0.98

CO2 + tripalmitin PRa

PR-VT 0.2772 −86.5622 −0.0957 28.1683 0.08 1.63

PC-SAFT 0.2227 −53.4852 − − 0.04 0.35

CO2 + tristearin PRa

PR-VT 0.0180 −0.0012 −0.0174 0.0004 0.05 0.29

PC-SAFT 0.2799 −75.8192 − − 0.03 0.12

CO2 + triolein PR 0.0475 −0.2357 0.0805 0.1515 0.03 4.61

PR-VT 0.0212 0.0848 0.0183 −0.0167 0.03 0.17

PC-SAFT 0.3245 −94.0391 − − 0.02 0.08

CO2 + trilaurin PR 0.0727 − 0.0823 − 0.08 1.78

PR-VT 0.0432 − 0.0807 − 0.08 1.69

PC-SAFT 0.0412 − − − 0.02 1.85

methanol + triolein PR −0.2813 0.0003 −0.4837 −0.0011 0.02 2.08

PR-VT −0.3170 0.0010 −0.7139 −0.0018 0.02 3.19

PC-SAFT 0.2018 −75.6285 − − 0.01 0.81
aIt is not possible to reach convergence.
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Tables 6− 9. Deviations were calculated in according with
eqs 30 and 31.

∑Δ =
| − |

y
y y

yi

n

1

calc exp

calc (30)

∑Δ =
| − |

P
P P

P

n

1

calc exp

calc (31)

It is possible to see in the tables, for binary systems containing
CO2 and triacylglycerols, that the use of the volume translation in

Table 7. Results of Binary Systems: Supercritical Solvent + Fatty Acid

kij lij

system EoS A B A′ B′ Δy1 ΔP

CO2 + caproic acid PR −0.0900 29.5712 0.1340 −10.5286 16.73 56.91

PR-VT 0.0204 −0.0077 0.1196 0.0009 18.66 63.04

PC-SAFT 0.0884 −14.6423 − − 2.46 3.48

CO2 + lauric acid PR 0.0564 0.0649 0.03990 −0.0080 1.42 5.27

PR-VT 0.0632 0.0015 0.0279 −0.0003 1.40 3.24

PC-SAFT 0.1347 −31.5124 − − 0.48 0.87

CO2 + palmitic acid PR 0.0715 0.0389 0.0061 −0.0242 0.06 0.94

PR-VT 0.0780 −0.0121 −0.0012 0.0094 0.06 0.81

PC-SAFT 0.1696 −41.4762 − − 0.03 0.27

Table 8. Results of Binary Systems: Supercritical Solvent + Ester

kij lij

system EoS A B A′ B′ Δy1 ΔP

CO2 + ethyl stearate PR 0.0550 0.0005 0.0657 0.0001 0.81 3.79

PR-VT 0.0213 0.0006 0.0333 −0.0041 0.58 2.24

PC-SAFT 0.1884 −42.4412 − − 0.13 0.74

CO2 + ethyl oleate PR 0.0504 −0.0002 0.0469 0.0003 1.01 1.79

PR-VT 0.0400 −0.0176 0.0302 0.0017 0.90 1.13

PC-SAFT 0.1685 −39.8245 − − 0.32 0.29

CO2 + ethyl linoleate PR 0.0451 0.0247 0.0443 −0.0029 1.58 3.78

PR-VT 0.0835 −0.0168 0.0747 0.0100 2.25 6.50

PC-SAFT 0.1906 −46.8341 − − 0.42 0.75

CO2 + DHA ethyl ester PR 0.0513 −0.0124 0.0870 0.0045 0.74 2.41

PR-VT 0.1120 −0.0144 0.1562 0.0044 22.57 79.41

PC-SAFT 0.1787 −35.1261 − − 0.09 0.36

CO2 + EPA ethyl ester PR −0.0272 22.2080 0.0781 −1.8923 0.73 2.80

PR-VT 0.1731 −18.1080 0.1442 3.1771 1.31 3.42

PC-SAFT 0.3538 −97.4521 − − 0.12 0.63

ethanol + ethyl myristate PR −0.1083 −0.0003 0.2957 0.0007 9.66 66.18

PR-VT −0.0878 −0.0004 0.3356 0.0007 10.46 69.98

PC-SAFT 0.2057 −85.5372 − − 1.32 1.48

ethanol + ethyl laurate PR −0.1968 0.0087 0.2296 0.0029 8.44 51.66

PR-VT −0.1779 −0.0016 0.2804 0.0009 9.20 57.11

PC-SAFT 0.1213 −39.5771 − − 1.08 2.47

methanol + methyl myristate PR 0.0959 −0.0024 0.4512 0.0022 16.83 110.57

PR-VT 0.1040 −0.0098 0.4619 0.0064 16.65 105.47

PC-SAFT 0.0348 7.5196 − − 1.25 2.78

methanol + methyl laurate PR 0.0179 −0.0024 0.4046 0.0023 19.17 101.54

PR-VT 0.0125 −0.0014 0.3896 0.0016 17.71 89.03

PC-SAFT 0.1045 −28.5642 − − 1.87 2.49

methanol + methyl stearate PR 0.0512 0.0040 0.3317 −0.0003 4.23 25.81

PR-VT 0.0632 0.0018 0.3587 0.0003 4.49 27.49

PC-SAFT 0.0061 18.4671 − − 0.74 1.82

Table 9. Results of Binary Systems: Supercritical Solvent + Glycerol

kij lij

system EoS A B A′ B′ Δy1 ΔP

ethanol + glycerol PR −0.6594 −0.0039 −0.3220 −0.0029 22.37 85.24

PR-VT −0.6334 −0.0327 −0.3153 −0.0051 22.57 79.41

PC-SAFT −0.0343 38.0623 − − 1.41 2.73

methanol + glycerol PR −0.3916 −0.0071 −0.0745 0.0002 12.57 62.71

PR-VT −0.3672 −0.0015 −0.0655 −0.0001 12.76 58.01

PC-SAFT 0.1479 −56.7821 − − 1.32 2.53
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Table 10. SMILES Code for the Biodiesel Components

component SMILES code

tricaprilin CCCCCCCC(O)OCC(COC(O)CCCCCCC)OC(O)CCCCCCC

tripalmitin CCCCCCCCCCCCCCCC(O)OCC(COC(O)CCCCCCCCCCCCCCC)OC(O)CCCCCCCCCCCCCCC

tristearin CCCCCCCCCCCCCCCCCC(O)OCC(COC(O)CCCCCCCCCCCCCCCCC)OC(O)CCCCCCCCCCCCCCCCC

triolein CCCCCCCC\CC/CCCCCCCC(O)OCC(COC(O)CCCCCCC\CC/CCCCCCCC)OC(O)CCCCCCC\CC/CCCCCCCC

trilaurin CCCCCCCCCCCC(O)OCC(COC(O)CCCCCCCCCCC)OC(O)CCCCCCCCCCC

caproic acid CCCCCC(O)O

lauric acid CCCCCCCCCCCC(O)O

palmitic acid CCCCCCCCCCCCCCCC(O)O

ethyl stearate CCCCCCCCCCCCCCCCCC(O)OCC

ethyl oleate CCCCCCCC\CC/CCCCCCCC(O)OCC

ethyl linoleate CCCCC/CC\C\CC/CCCCCCCC(O)OCC

DHA ethyl ester CCCCCCCCCCCCCCCCCCCC(O)OCC

EPA ethyl ester CC/CC\C/CC\C/CC\C/CC\C/CC\CCCC(OCC)O

ethyl myristate CCCCCCCCCCCCCC(O)OCC

ethyl laurate CCCCCCCCCCCC(O)OCC

methyl laurate CCCCCCCCCCCC(O)OC

methyl myristate CCCCCCCCCCCCCC(O)OC

methyl stearate CCCCCCCCCCCCCCCCCC(O)OC

glycerol OCC(O)CO

Table 11. Numeric Values for Molecular Descriptors of the Biodiesel Components

molecular descriptor MW AMW nH nC nStructures Pol X1Av X1SOL XMOD RDCHI

tricaprilin 470.77 5.672 50 27 1 35 0.423 16.028 100.531 4.588

tripalmitin 807.49 5.210 98 51 1 59 0.456 28.028 172.531 7.037

tristearin 891.67 5.154 110 57 1 65 0.460 31.028 190.531 7.617

triolein 885.61 5.303 104 57 1 65 0.443 31.028 190.531 7.617

trilaurin 639.13 5.371 74 39 1 47 0.444 22.028 136.531 5.842

caproic acid 116.18 5.809 12 6 1 5 0.427 3.770 23.775 1.909

lauric acid 200.36 5.273 24 12 1 11 0.461 6.770 41.775 2.795

palmitic acid 256.48 5.130 32 16 1 15 0.470 8.770 53.775 3.330

ethyl stearate 312.60 5.042 40 20 1 20 0.475 10.808 66.334 3.807

ethyl oleate 310.58 5.176 38 20 1 20 0.458 10.808 66.334 3.807

ethyl linoleate 308.56 5.320 36 20 1 20 0.441 10.808 66.334 3.807

DHA ethyl ester 356.25 5.699 36 24 1 22 0.405 11.808 72.334 4.053

EPA ethyl ester 314.58 5.699 34 22 1 21 0.401 11.808 72.334 4.053

ethyl myristate 256.48 5.130 32 16 1 16 0.469 8.808 54.334 3.298

ethyl laurate 228.42 5.191 28 14 1 14 0.464 7.808 48.334 3.034

methyl laurate 214.39 5.229 26 13 1 13 0.456 7.308 45.541 2.910

methyl myristate 242.45 5.159 30 15 1 15 0.461 8.308 51.541 3.178

methyl stearate 298.57 5.061 38 19 1 19 0.469 10.308 63.541 3.692

glycerol 92.11 6.579 8 3 1 4 0.341 2.808 18.840 1.559

molecular descriptor P_VSA_p_1 nHDon nHAcc nRCOOH nRCOOR SAacc SAtot VvdwMG PDI TPSA(ToT)

tricaprilin 588.555 0 3 0 6 78.900 799.845 108.434 284.959 0.859

tripalmitin 1153.568 0 3 0 6 78.900 1425.687 108.434 515.175 0.876

tristearin 1294.821 0 3 0 6 78.900 1582.148 108.434 572.729 0.878

triolein 1224.195 0 3 0 6 78.900 1553.171 108.434 563.947 0.881

trilaurin 871.062 0 3 0 6 78.900 1112.766 108.434 400.067 0.870

caproic acid 129.482 1 0 1 2 37.300 217.184 67.828 73.390 0.787

lauric acid 270.735 1 0 1 2 37.300 373.644 67.828 130.944 0.833

palmitic acid 364.904 1 0 1 2 37.300 477.951 67.828 169.313 0.847

ethyl stearate 470.844 0 1 0 2 26.300 576.976 36.145 207.682 0.864

ethyl oleate 447.302 0 1 0 2 26.300 567.317 36.145 204.755 0.866

ethyl linoleate 423.760 0 1 0 2 26.300 557.658 36.145 201.828 0.868

DHA ethyl ester 400.217 0 1 0 2 26.300 580.835 36.145 212.230 0.877

EPA ethyl ester 400.217 0 1 0 2 26.300 580.835 36.145 212.230 0.877

ethyl myristate 376.675 0 1 0 2 26.300 472.669 36.145 169.313 0.857

ethyl laurate 329.591 0 1 0 2 26.300 420.515 36.145 150.128 0.852

methyl laurate 306.049 0 1 0 2 26.300 394.438 36.145 140.536 0.848

methyl myristate 353.133 0 1 0 2 26.300 446.592 36.145 159.721 0.854

methyl stearate 447.302 0 1 0 2 26.300 550.899 36.145 198.090 0.862

glycerol 58.856 0 0 3 3 60.690 186.906 128.050 51.536 0.629
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the PR EoS generates better results (more accurate) with a
smaller error in the vapor phase composition and the system
pressure. In fact, some systems only can be modeled with the
implementation of the VT-PR EoS. The same improvement can
be observed in some systems with fatty acids and esters and in the
system constituted by an alcohol solvent and glycerol. However,
certain systems, as CO2 + ethyl linoleate, CO2 +DHA ethyl ester,
and CO2 + EPA ethyl ester, the PR EoS provides better results
(more accurate when compared with experimental data) than the

VT-PR EoS. These results may mean that the parameters N and
k3 of the VT-PR EoS were obtained with values of vapor pressure
and specific volume of saturated liquid with a small accuracy or
the critical properties of the components of the systems used in
the thermodynamic modeling are not appropriate.
Nevertheless, the results provided by the VT-PR EoS, in most

cases, are more accurate than the ones provided by the PR EoS,
generating a better adjustment of the experimental data with
optimum values of kij and lij.

Table 12. Results for X−X−2 and 3−X−X−2 Architectures

architecture iteration ΔP Δy1 architecture iteration ΔP Δy1
2−3−2 27 5.25 0.89 3−3−5−2 15 5.34 0.35

2−5−2 12 7.43 0.78 3−3−10−2 50 5.04 0.42

2−10−2 7 5.23 1.05 3−3−15−2 6 5.02 0.45

2−15−2 32 6.43 0.85 3−3−20−2 4 5.06 0.44

2−20−2 43 8.67 0.93 3−3−25−2 27 4.87 0.37

2−25−2 2 5.89 0.91 3−3−30−2 30 4.58 0.39

2−30−2 33 6.34 0.97 3−5−5−2 4 4.79 0.31

3−3−2 38 8.78 0.87 3−5−10−2 22 4.87 0.33

3−5−2 48 5.43 0.89 3−5−15−2 15 4.53 0.28

3−10−2 25 6.21 1.05 3−5−20−2 27 4.41 0.27

3−15−2 44 5.87 1.07 3−5−25−2 42 4.67 0.25

3−20−2 13 8.77 1.10 3−5−30−2 49 4.25 0.28

3−25−2 22 5.30 0.89 3−10−5−2 28 4.20 0.29

3−30−2 18 6.34 0.82 3−10−10−2 9 4.38 0.31

5−3−2 20 6.45 0.93 3−10−15−2 8 4.32 0.24

5−5−2 34 5.67 0.98 3−10−20−2 10 4.23 0.29

5−10−2 38 5.89 1.08 3−10−25−2 35 4.12 0.26

5−15−2 8 5.08 0.97 3−10−30−2 44 4.02 0.28

5−20−2 11 5.76 1.09 3−15−5−2 50 4.23 0.32

5−25−2 13 4.53 1.12 3−15−10−2 23 4.26 0.35

5−30−2 44 7.37 0.85 3−15−15−2 29 4.04 0.32

10−3−2 43 4.09 0.88 3−15−20−2 22 4.01 0.33

10−5−2 45 7.68 0.96 3−15−25−2 13 4.08 0.28

10−10−2 26 5.35 0.91 3−15−30−2 24 4.12 0.25

10−15−2 41 6.45 0.90 3−20−5−2 13 4.03 0.24

10−20−2 20 4.34 0.88 3−20−10−2 25 4.06 0.22

10−25−2 34 6.53 1.03 3−20−15−2 32 3.89 0.21

10−30−2 7 4.32 1.08 3−20−20−2 27 3.58 0.25

15−3−2 45 4.38 0.89 3−20−25−2 6 3.60 0.28
15−5−2 2 4.39 0.95 3−20−30−2 47 3.50 0.30

15−10−2 31 4.56 0.92 3−25−5−2 4 3.60 0.22

15−15−2 18 4.51 0.89 3−25−10−2 50 3.68 0.24

15−20−2 24 4.23 1.03 3−25−15−2 23 3.59 0.28

15−25−2 36 4.51 1.08 3−25−20−2 7 3.39 0.20

15−30−2 36 4.33 1.02 3−25−25−2 34 3.57 0.24

20−3−2 10 4.87 0.85 3−25−30−2 42 3.60 0.22

20−5−2 42 4.23 0.89 3−30−5−2 12 3.68 0.26

20−10−2 42 4.03 0.92 3−30−10−2 50 3.79 0.21

20−15−2 8 4.44 0.95 3−30−15−2 48 3.75 0.29

20−20−2 43 4.16 0.87 3−30−20−2 21 3.84 0.24

20−25−2 25 4.27 1.03 3−30−25−2 6 4.02 0.22

20−30−2 26 4.87 1.02 3−30−30−2 25 4.05 0.24

25−3−2 13 4.19 0.97

25−5−2 26 4.55 0.92

25−10−2 39 4.02 0.87

25−15−2 11 3.89 0.96

25−20−2 49 3.87 0.93

25−25−2 27 4.02 1.05
25−30−2 5 3.82 0.78
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3.5. Thermodynamic Simulation. 3.5.1. SMILES code.The
SMILES codes obtained are shown in Table 10.
3.5.2. Molecular Descriptor.Numeric values of the molecular

descriptors, obtained by using the SMILES codes (Table 10) in
Dragon 7.0, are shown in Table 11.
3.5.3. Artificial Neural Networks. The shortage of data about

the vapor−liquid equilibrium of biodiesel systems using ANN
was the reason to investigate an optimum architecture through
trial and error. Different architectures were obtained combining
different numbers of nodes among the layers. At first, config-
urations with three layers (X−X−2) and then configurations with
four layers (X−X−X−2) were analyzed, to find themost accurate
one for this study.
All data are used independently of the compounds present

in the binary systems. These data (367) are arranged randomly
for a better prediction capability and divided into three groups
according to the three steps that constitute the thermodynamic

simulation, shown in Figure 2: learning (300), testing (40), and
predicting (27). The type of ANN employed was the feed-
forward back-propagation; the error between one iteration and
the next one was set to 0.0001, the maximum of iterations was set
to 500, and the program ran 50 times using the Levenberg−
Marquardt algorithm.
The results of the thermodynamic simulation are presented in

Tables 12 (configurations X−X−2 and 3−X−X−2) and 13
(configurations 5−X−X−2 and 10−X−X−2), respectively. The
average absolute deviations, |ΔP| and |Δy1|, for a set of N data
were defined as

∑|Δ | =
| − |

N
DV

100 (DV) (DV)
(DV)

N
i

i1

pred exp

pred
(32)

where DV represents each dependent variable: system pressure,
P (bar), and vapor phase composition, y1.

Table 13. Results for 5−X−X−2 and 10−X−X−2 Architectures

architecture iteration ΔP Δy1 architecture iteration ΔP Δy1
5−3−5−2 41 4.53 0.31 10−3−5−2 32 2.89 0.13
5−3−10−2 24 4.23 0.28 10−3−10−2 40 2.58 0.09
5−3−15−2 5 4.20 0.21 10−3−15−2 16 2.23 0.10
5−3−20−2 22 4.28 0.23 10−3−20−2 50 2.07 0.06
5−3−25−2 42 4.23 0.24 10−3−25−2 8 1.89 0.05
5−3−30−2 11 4.14 0.19 10−3−30−2 20 1.80 0.04
5−5−5−2 26 4.19 0.14 10−5−5−2 15 1.57 0.05
5−5−10−2 27 4.03 0.16 10−5−10−2 38 1.35 0.12
5−5−15−2 16 4.15 0.18 10−5−15−2 22 1.48 0.03
5−5−20−2 12 3.89 0.13 10−5−20−2 48 1.30 0.02
5−5−25−2 34 3.76 0.12 10−5−25−2 12 1.26 0.04
5−5−30−2 41 3.81 0.10 10−5−30−2 35 1.20 0.02
5−10−5−2 4 3.52 0.09 10−10−5−2 38 1.07 0.05
5−10−10−2 12 3.62 0.07 10−10−10−2 22 1.03 0.08
5−10−15−2 48 3.48 0.11 10−10−15−2 43 0.89 0.07
5−10−20−2 26 3.52 0.09 10−10−20−2 23 0.98 0.06
5−10−25−2 39 3.45 0.06 10−10−25−2 7 0.86 0.07
5−10−30−2 31 3.42 0.08 10−10−30−2 26 0.95 0.05
5−15−5−2 41 3.33 0.07 10−15−5−2 28 1.01 0.04
5−15−10−2 50 3.21 0.07 10−15−10−2 47 0.88 0.06
5−15−15−2 8 3.12 0.10 10−15−15−2 27 0.83 0.10
5−15−20−2 36 3.05 0.08 10−15−20−2 44 1.02 0.12
5−15−25−2 6 3.15 0.12 10−15−25−2 45 0.98 0.05
5−15−30−2 39 2.89 0.14 10−15−30−2 49 1.14 0.07
5−20−5−2 40 2.81 0.09 10−20−5−2 4 1.28 0.07
5−20−10−2 26 2.57 0.09 10−20−10−2 48 1.25 0.04
5−20−15−2 38 2.69 0.07 10−20−15−2 24 1.33 0.03
5−20−20−2 24 2.61 0.12 10−20−20−2 38 1.43 0.03
5−20−25−2 35 2.83 0.08 10−20−25−2 38 1.50 0.05
5−20−30−2 25 2.98 0.11 10−20−30−2 48 1.68 0.04
5−25−5−2 18 3.03 0.13 10−25−5−2 48 1.60 0.12
5−25−10−2 14 3.15 0.10 10−25−10−2 11 1.66 0.07
5−25−15−2 1 3.01 0.12 10−25−15−2 30 1.63 0.05
5−25−20−2 48 3.21 0.10 10−25−20−2 40 1.75 0.09
5−25−25−2 19 3.04 0.10 10−25−25−2 10 1.72 0.06
5−25−30−2 1 3.27 0.09 10−25−30−2 2 1.82 0.08
5−30−5−2 15 3.31 0.13 10−30−5−2 20 1.80 0.06
5−30−10−2 29 3.24 0.11 10−30−10−2 44 1.78 0.06
5−30−15−2 41 3.45 0.08 10−30−15−2 3 1.89 0.07
5−30−20−2 41 3.48 0.13 10−30−20−2 49 2.01 0.10
5−30−25−2 26 3.52 0.14 10−30−25−2 34 2.04 0.06
5−30−30−2 45 3.50 0.09 10−30−30−2 45 2.11 0.04
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The best result depends on the selection of appropriate data,
the choice of a good architecture, and variables capable of gen-
erating adequate correlation and prediction of thermodynamic
properties. The interpretation of the average absolute devia-
tion and the lowest maximum absolute deviation led to the
architecture 10−10−25−2 found at the seventh run, as shown in
Table 13.
In the learning step, individual absolute deviations between

correlated and experimental values were below 1.5% for the most
of the data. For the system pressure, 15 points showed absolute
deviations greater than 3.0%, with 4.5% the highest value. For the
vapor phase composition, 10 points showed absolute deviations
greater than 0.8% (1.0% for the highest value), while all of the
other 290 points gave absolute deviations below than 0.7%.
Average absolute deviations for the system pressure and the
vapor phase composition were 1.35 and 0.38%, respectively.
These values were considered accurate enough to say that the
ANN learned successfully.

Once the optimum network architecture was determined in
the learning step, 40 and 27 input data (independent variables) of
the biodiesel systems, not used in the previous process, were
included in the third and fifth worksheets of the Excel file,
respectively, and were read by the computer program. Some
of the tested (15 points) and predicted (15) values of the sys-
tem pressure and the vapor phase composition are shown in
Tables 14 and 15.
Table 14 shows the average individual absolute deviations for

the system pressure and the vapor phase composition tested by
the proposed ANN architecture for points (40) not used during
the learning step. Testing results were done at conditions used
during the learning process. The optimum configuration
reproduced the system pressure with absolute deviations below
1.51%, except in two cases, in which absolute deviations were
below 3.00%. For the vapor phase composition, the absolute
deviations were below 0.40% and, in only one case, the absolute
deviation was below 0.43%. In testing step, the average total

Table 14. Some Average Individual Deviations for the System Pressure (MPa) and Vapor Phase Composition in the Testing Step
for the Architecture 10−10−25−2

binary system experimental experimental testing step % deviation

biodiesel component (Tc, Pc, w) supercritical solvent (1) (Tc, Pc, w) T (K) x1 MD P (MPa) y1 P (MPa) y1 ΔP Δy1
EPA ethyl ester CO2 323.2 0.6437 − 0.513 0.9999 0.520 0.9982 0.77 0.17
tripalmitin CO2 353.2 0.8324 − 0.562 0.9984 0.551 0.9952 1.09 0.32
caproic acid CO2 313.2 0.9110 − 0.853 0.9989 0.862 0.9953 1.40 0.36
methyl myristate methanol 543.0 0.8290 − 0.527 0.9993 0.524 0.9971 0.77 0.22
palmitic acid CO2 373.2 0.7063 − 2.496 0.9999 2.470 0.9973 0.85 0.26
C18 methyl esters methanol 573.0 0.8600 − 1.155 0.9860 1.143 0.9831 0.79 0.29
triolein methanol 493.0 0.9755 − 0.494 0.9997 0.470 0.9970 2.97 0.27
ethyl oleate CO2 333.2 0.8180 − 1.215 0.9990 1.202 0.9965 0.83 0.25
tristearin CO2 333.0 0.8770 − 3.304 0.9997 3.251 0.9958 1.51 0.39
ethyl laurate ethanol 523.0 0.8340 − 0.480 0.9983 0.482 0.9968 1.04 0.15
methyl laurate methanol 523.0 0.5870 − 0.434 0.9991 0.443 0.9973 1.38 0.18
glycerol methanol 543.0 0.5920 − 0.703 0.9999 0.711 0.9966 1.27 0.33
ethyl linoleate CO2 313.2 0.5820 − 0.430 1.0000 0.440 0.9978 1.15 0.22
DHA ethyl ester CO2 323.2 0.8664 − 1.441 0.9964 1.462 0.9940 1.23 0.24
glycerol ethanol 523.0 0.4550 − 0.332 0.9999 0.323 0.9956 2.19 0.43

1.28 0.27

Table 15. Some Average Individual Deviations for the System Pressure (MPa) and the Vapor Phase Composition in the Prediction
Step for the Architecture 10−10−25−2

binary system experimental experimental prediction step % deviation

biodiesel component (Tc, Pc, w) supercritical solvent (1) (Tc, Pc, w) T (K) x1 MD P (MPa) y1 P (MPa) y1 ΔP Δy1
methyl laurate methanol 493.2 0.4139 − 0.201 0.9997 0.193 0.9988 1.46 0.09
triolein CO2 353.0 0.8360 − 2.282 1.0000 2.264 0.9990 1.23 0.10
EPA ethyl ester CO2 333.2 0.7777 − 1.040 1.0000 1.031 0.9988 1.18 0.12
ethyl stearate CO2 313.2 0.8460 − 0.962 0.9988 0.952 0.9968 1.12 0.20
DHA ethyl ester CO2 313.2 0.8717 − 1.140 0.9940 1.140 0.9929 0.56 0.11
tristearin CO2 353.0 0.8830 − 0.713 1.0000 0.711 0.9989 0.73 0.11
ethyl oleate CO2 333.2 0.6860 − 2.082 0.9698 2.062 0.9673 0.99 0.25
lauric acid CO2 333.2 0.8529 − 0.401 0.9997 0.392 0.9979 1.23 0.18
ethyl myristate ethanol 543.0 0.5520 − 0.370 0.9998 0.361 0.9981 1.58 0.17
glycerol ethanol 493.0 0.8330 − 1.514 0.9864 1.500 0.9840 0.72 0.24
ethyl linoleate CO2 333.2 0.9090 − 0.712 0.9999 0.703 0.9971 1.21 0.28
C18 methyl esters methanol 573.0 0.6070 − 2.002 0.9673 1.982 0.9650 0.36 0.24
methyl myristate methanol 523.0 0.3900 − 4.071 0.9991 4.094 0.9973 0.50 0.18
tripalmitin CO2 333.0 0.9120 − 0.810 0.9924 0.811 0.9911 0.90 0.13
triolein methanol 433.2 0.7300 − 0.812 0.9994 0.800 0.9969 1.12 0.25

0.99 0.18
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absolute deviations for the system pressure and the vapor phase
composition were 1.28 and 0.27%, respectively.
Table 15 shows the average absolute deviations for the system

pressure and the vapor phase composition predicted for data not
used in the two previous steps by the best-selected model. The
optimum ANN model reproduced the system pressure and the
vapor phase composition of the fluid phase behavior of the
vapor−liquid equilibrium of biodiesel systems at supercritical
conditions with average absolute deviations of 0.99 and 0.18%,

respectively. The maximum individual absolute deviation in
predicting the system pressure was 1.58%. With respect to the
vapor phase composition, this property was predicted with
average absolute deviations from 0.09 to 0.28%.
In Figures 3−6 were plotted the results obtained for the

predicting step of system pressure and the vapor phase com-
position for all configurations studied in this work. Asmentioned,
the optimum architecture found was the four-layer configura-
tion 10−10−25−2 (Figure 6).

Figure 3. Deviations for the pressure (⧄) and vapor phase composition (⧅) for architectures of type X−X−2.

Figure 4. Deviations for the pressure (⧄) and vapor phase composition (⧅) for architectures of type 3−X−X−2.
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In Figures 7−10 are shown the predicted results of the fluid
phase behavior of the vapor−liquid equilibrium of binary systems
at supercritical conditions involving solvents and biodiesel
components. These results were obtained by using the cubic
equations of state, PR and VT-PR, and the noncubic equation of
state, PC-SAFT, all of them with adjustable parameters deter-
mined previously and the ones obtained with ANN with the 10−
10−25−2 architecture. Figures 7−10 show the excellent agree-
ment between the experimental data and the PC-SAFT EoS and
the ANN predicted data. The great difference between the

thermodynamic modeling and thermodynamic simulation is the
processing time. As for thermodynamic modeling, it is necessary
to adjust binary interaction parameters for each system at several
temperatures; the thermodynamic simulation performed with
artificial neural networks and molecular descriptors involves the
data of all binary systems at once.

4. CONCLUSIONS
In this work, the fluid phase behavior of binary systems involving
solvents and biodiesel components at supercritical conditions

Figure 5. Deviations for the pressure (⧄) and vapor phase composition (⧅) for architectures of type 5−X−X−2.

Figure 6. Deviations for the pressure (⧄) and vapor phase composition (⧅) for architectures of type 10−X−X−2.
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Figure 7. Comparison between experimental data (●) and the predicted phase equilibrium diagram using PR (···), VT-PR (---), and PC-SAFT (− ·−)
equations of state and ANN model () for CO2 (1) + trilaurin (2) (T = 353.15 K).

Figure 8. Comparison between experimental data (●) and the predicted phase equilibrium diagram using PR (···), VT-PR (---), and PC-SAFT (− ·−)
equations of state and ANN model () for CO2 (1) + ethyl stearate (2) (T = 333.15 K).

Figure 9. Comparison between experimental data (●) and the predicted phase equilibrium diagram using PR (···), VT-PR (---), and PC-SAFT (− ·−)
equations of state and ANN model () for methanol (1) + methyl myristate (2) (T = 543.15 K).
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was studied by comparing the performance between the
thermodynamic modeling (cubic and noncubic equations of
state) and simulation (ANN + molecular descriptors). Pure
component parameters for the VT-PR EoS, N and k3, were
obtained using the vapor pressure and the specific volume of the
saturated liquid of each component. For the PR and VT-PR
models, the vdW2 mixing rule was used and the binary
interaction parameters were obtained as a function of temper-
ature. Experimental data points of all binary systems considered
thermodynamically inconsistent were very few.
Thermodynamicmodels, used in this work, adjusted appropriately

the experimental data studied for the most cases by using the bubble
pressure method and the ϕ−ϕ approach. However, the PR and VT-
PRequations of state, at some conditions, were not able to predict the
vapor phase. The PC-SAFT correlation fitted the all vapor−liquid
equilibrium data with a good accuracy. In this work an artificial neural
network model has been used to predict the bubble point (BUBL P)
by using molecular descriptors. Results obtained by the ANN with
molecular descriptors, for the best architecture (10−10−25−2), have
given an overall agreement between experimental and prediction
values for the thermodynamic consistency data. With this con-
figuration, the training and prediction results are very close to the
experimental data, being that the absolute average deviations for the
bubble pressure and the vapor phase compositions are 1.28 and
0.27% for the training step and0.99 and0.18% for the prediction step.
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M. A. Determination of the vapor pressure of ethyl esters by differential
scanning calorimetry. J. Chem. Thermodyn. 2011, 43, 943.
(48) Pratas, M. J.; Freitas, S.; Oliveira, M. B.; Monteiro, S. C.; Lima, A.
S.; Coutinho, J. A. P. Densities and viscosities of fatty acid methyl and
ethyl esters. J. Chem. Eng. Data 2010, 55, 3983.
(49) Pratas, M. J.; Freitas, S.; Oliveira, M. B.; Monteiro, S. C.; Lima, A.
S.; Coutinho, J. A. P. Densities and viscosities of minority fatty acid
methyl and ethyl esters present in biodiesel. J. Chem. Eng. Data 2011, 56,
2175.
(50)Mishra, V. K.; Temelli, F.; Ooraikul, B. Vapor pressure of fatty acid
esters: correlation and estimation. J. Food Eng. 1994, 23, 467.
(51) NIST Chemistry WebBook, NIST Standard Reference Database 69;
Linstrom, P. J., Mallard, W. G., Eds.; National Institute of Standards and
Technology: Gaithersburg, MD, 2017.
(52) Stragevitch, L.; d’Avila, S. G. Application of a generalized
maximum likelihood method in the reduction of multicomponent
liquid-liquid equilibrium data. Braz. J. Chem. Eng. 1997, 14, 41.
(53) Igarashi, E. M. S. Thermodynamic modeling, consistency and
simulation of the vapor-liquid phase behavior of binary systems
containing components present in the biodiesel production (in
Portuguese). M.S. Dissertation, Engineering School of Lorena,
University of Saõ Paulo, 2017.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b04195
Ind. Eng. Chem. Res. 2018, 57, 751−767

767

http://dx.doi.org/10.1021/acs.iecr.7b04195

