LOM3246-Técnicas de Caracterização de Materiais

ANÁLISE DE TAMANHOS DE PARTÍCULAS

VIVIANE DO SOCORRO DA COSTA

Introdução a metalurgia do pó

Figura 1 – Fluxograma das características gerais do Processo "Metalurgia do Pó".

Introdução a metalurgia do pó

Figura 2 – Um tetraedro que ilustra a interdependência entre vários aspectos da MP, incluindo a química da liga, características do pó, variáveis de processamento e desempenho do produto final. **Propriedades**

Introdução a metalurgia do pó

Figura 3 – Nichos onde atua a Metalurgia do Pó.

CATIVO metais refratários metais reativos

Ex.: Filamentos de lâmpadas de tungstênio.

ECONÔMICO custo precisão produtividade

> ÚNICO ligas microestrutura compósitos

Aplicações ideais

Ex.: Capacitores de Tântalo poroso.

Ex.: Engrenagem

Ex.: Filtros de

aços inoxidáveis.

de automação.

Fonte: Adaptado de R. German, 1994.

Processos de conformação de metais

Figura 4 – Metalurgia do Pó e outros processos de conformação de metais.

Fundição de Precição

Moldagem de Pós por Injeção

Materiais produzidos pela M/P

Figura 5 – comparação de desempenho entre diversos materiais.

Processos de obtenção de Pós Metálicos

- Vários processos permitem a fabricação de pó metálico:
- ✓ Mecânicos (Cominuição de metais e moagem de alta energia),
- ✓ Químico (redução de um composto em estado sólido e decomposição térmica),
- ✓ Eletroquímicos, atomização (gás, água e centrífuga) e outros processos (vaporização e reações de síntese para pós intermetálicos).

Figura 6 – Os vários formatos e tamanhos obtidos de pós, resultando em características que influenciam nas propriedades físicas do pó.

- Forma
- Tamanho
- Distribuição de tamanho
- Densidade aparente
- Escoabilidade

Figura 7 – Alguns exemplos de diversos formatos e tamanhos de pós metálicos como visto em (MEV).

Fonte: Adaptado de R. German, 1994.

• Forma

- ✓ Avaliação qualitativa
- Esférica, alongada, acicular, flocos
- ✓ Razão de aspecto
- Medida em imagem de microscópio
- Razão = dimensão maior/dimensão

menor

• A importância do tamanho de partícula

✓ Nos materiais sintetizados

Muitas propriedades dependem do tamanho de grão, que por sua vez depende do tamanho de partícula.

Nos materiais em que a porosidade é relevante, ela depende da distribuição de tamanho de partícula.

O processamento é sensível a distribuição de tamanho.

- Tamanho de partícula
- Tamanho médio
- "diâmetro médio equivalente"
- Distribuição de tamanho de Partícula

tamanho: Parâmetros geométricos

Figura 8 – Métodos de medida de tamanho de partícula com formato irregular.

Figura 9 – A imagem projetada de uma partícula arredondada, mas irregular.

DA

Fonte: Adaptado de R. German, 1994.

• Distribuição de tamanho de Partícula

Figura 10 – Distribuição granulométrica por peneiramento e gráfico de distribuição normal.

tamanho de partícula [µm]_{Fonte:} Adaptado de R. German, 1994. log tamanho

Efeito da forma na densidade aparente

Figura 11 – Um gráfico de densidade fracionaria para pós monosizados versus rugosidade, conforme expresso por um perfil de partícula típica. A densidade do empacotamento depende da aspereza e irregularidade das partículas

Densidade fracionaria

Aumento da rugosidade das partículas

Fonte: Adaptado de R. German, 1994.

Figura 12 – Um gráfico da mudança na densidade de empacotamento com a relação comprimento / diâmetro (L / D) para fibras. O melhor empacotamento ocorre com partículas equiaxiais. **Densidade fracionaria**

Figura 13– Um gráfico da densidade fracionaria de compactação versus composição para misturas bimodais de esferas grandes e pequenas. Os esboços mostram como a densidade melhora até o ponto crítico em que as partículas grandes são compactadas e as pequenas partículas preenchem os espaços intersticiais.

Densidade de Empacotamento

Técnicas para a análise granulométrica

Tabela 1 - Faixas de tamanho recomendadas para cada método de análise granulométrica

Método	Faixa de aplicação (µm)
Peneiramento	5-100.000
Difração laser (Mastersizer 3000E)	0,1 a 1.000
Microscopia óptica	0,2-50
Microscopia eletrônica de varredura (MEV)	0,005-100

Fonte: Adaptado de LIMA VERDE et al., 2013, p.130.

Figura 14 - a) Agitador eletro-magnético e peneiras redondas para análise granulométrica. b) Distribuição das partículas nas peneiras, c) Mastersizer 3000E, d) microscopia óptica e e) microscopia eletrônica de varredura.

DETERMINAÇÃO DE TAMANHO DE PARTÍCULAS UTILIZANDO O EQUIPAMENTO MASTERSIZER

Figura 15 – Representação da difração laser ocorrida durante a análise do tamanho de partículas.

No método de difração a lazer as partículas grossas espalham o raio a menores ângulos e vice-versa.

O equipamento possui um sistema de detectores com luz vermelha, que detectam o espalhamento frontal, lateral e posterior. A fonte de comprimento de onda fixo de luz vermelha é o Laser néon de Hélio, cujo comprimento de onda define a faixa de tamanho de partícula que o aparelho mede. Nesse caso, como λ =632,8 nm.

Características do Equipamento

Figura 16 – Foto do equipamento Malvern Mastersizer3000E.

Escolha do Dispersante (Meio de Suspensão)

Tabela 2 – Dispersantes utilizados e seus respectivos índices de refração na ordem decrescente de uso (MASTERSIZER 3000E)

Dispersante	Índice de Refração	Dispersante	Índice de Refração
Água	1,33	Acetona	1,36
Etanol	1,36	Butanona	1,38
Álcoo isopropílico	1,39	Hexano	1,38

Características do Equipamento

Mastersizer 3000E é considerado \mathbf{O} 0 principal instrumento de análise de tamanho de partículas por difração laser no mercado pelo design, desempenho e experiência do usuário no software. No entanto, alguns clientes não precisam imediatamente da funcionalidade avançada que o Mastersizer 3000 oferece. Portanto, a Malvern Panalytical introduziu um instrumento básico para a família de produtos Mastersizer que se baseia no design comprovado do Mastersizer 3000, mas com funcionalidade de software e desempenho mais básico.

Figura 17 – Foto do equipamento Malvern Mastersizer3000E com o sistema completo.

Interpretação da Análise Granulométrica

A Figura 18 - ilustra a tela com os resultados de uma análise granulométrica realizada no equipamento Mastersizer 3000E.

Measurement Details																
Sample Name Average of 'Bauxita para C.A. Propantes - Sinterlite	interlite' Measurement Date Time 12/09/2018 14:31:51															
Operator Name Cliente	Analysis Date Time 12/09/2018 14:31:51															
SOP File Name HydroEV.cfg							Resul	t Source /	Averaged							
Analysis																
Particle Name Bauxita Dispersant Name Water	Particle Refractive Index 1,530 Dispersant Refractive Index 1,330															
Particle Absorption Index 0,100 Weighted Residual 1 20 %							Laser Ob	scuration	21,09 % Mie							
Analysis Model General Purpose							Analysis S	ensitivity	Normal							
Result																
Concentration 0,0138 %								Span	2,729							
Uniformity 0,853							Re	sult Units	Volume							
Specific Surface Area 532,0 m ² /kg								Dv (10)	1,52 µm							
D [3;2] 4,42 µm								Dv (50)	10,6 µm							
D [4;3] 13,6 μm								Dv (90)	30,4 µm							
Frequency (compatible)	Size (µm) %	Volume In	Size (µm) %	6 Volume In	Size (µm) %	Volume In	Size (µm) %	6 Volume In	Size (µm) %	6 Volume In	Size (µm) %	6 Volume In	Size (µm) 9	6 Volume In	Size (µm) %	6 Volume
	0,0995	0,00	0,357	0,00	1,28	1,44	4,58	2,81	16,4	5,23	58,9	0,00	211	0,00	756	0,0
80	0,113	0,00	0,405	0,00	1,45	1,36	5,21	3,00	18,7	5,23	66,9	0,00	240	0,00	859	0,0
€ 60- ≩	0,128	0,00	0,461	0,00	1,65	1,41	5,92	3,21	21,2	5,06	76,0	0,00	272	0,00	976	0,0
40- 4 40-	0,146	0,00	0,523	0,14	1,88	1,59	6,72	3,45	24,1	4,69	86,4	0,00	310	0,00	1110	
20-	0,166	0,00	0,594	0,50	2,13	1,81	7,64	3,71	27,4	4,12	98,1	0,00	352	0,00		
	0,188	0,00	0,675	0,98	2,42	2,02	8,68	3,99	31,1	3,40	111	0,00	400	0,00		
	0,214	0,00	0,767	1,42	2,75	2,20	9,86	4,28	35,3	2,59	127	0,00	454	0,00		
Size Classes (µm)	0,243	0,00	0,872	1,69	3,12	2,36	11,2	4,57	40,1	1,78	144	0,00	516	0,00		
	0,276	0,00	0,991	1,73	3,55	2,50	12,7	4,85	45,6	1,05	163	0,00	586	0,00		
	0,314	0,00	1,13	1,61	4,03	2,65	14,5	5,08	51,8	0,49	186	0,00	666	0,00		

Resumo de como funciona o Mastersizer 3000E

MASTERSIZER 3000 RESUMO DO PRODUTO

Referências

GERMAN, R. M. Powder metallurgy science. 2nd. ed. Princeton: Metal Powder Industries Federation, 1994.

GERMAN, R. M. Sintering theory and practice. Nova York: John Wiley & Sons, 1996. MALVERN. Difração Laser. Disponível em: http://www.malvern.com/. Acesso em: 03 Jun. 2019.

MALVERN INSTRUMENTS Ltd, Getting Started, Hydro series wet dispersion units, (Man 0479-2.2), Issue 2.2 August 2013.