

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena – EEL

USP Lorena

www.eel.usp.br

Imagens MEV

MICROGRAFIAS DE SiC (fotos obtidas no MEV - LEO 345VPi)

MICROGRAFIAS DE SiC (fotos obtidas no MEV - LEO 345VPi)

MICROGRAFIAS DE SiC (fotos obtidas no MEV - LEO 345VPi)

TRATAMENTOS TÉRMICOS, DIFUSÃO E FORMAÇÃO DE FASES EM SUPERCONDUTORES MULTIFILAMENTARES DE Cu+Nb₃AI

F. M. Negreiros, C. A. Rodrigues, D. Rodrigues Jr., CBECIMAT 2002, Natal, RN

Figura 2. Micrografia obtida em MEV do primeiro embutimento após tratamento térmico a 800^oC durante 200 horas: (a) região de filamentos, (b) identificação de fases relativas à Tabela I.

Tabela I. Resultados das medidas de composição por EDS das diferentes fases presentes no primeiro embutimento tratado a 800^oC por 200 horas (Figura 2).

Posição	Composição (%at)	Identificação das fases
1	Nb 82,4	
	Al 17,6	Nb ₃ Al
	Cu 1,0	
2	Nb 47,8	Fase intermediária de
	AI 26,9	$Nb_3AI + Nb_2AI$
	Cu 25,3	
3	Nb 62,1	
	AI 35,3	Nb ₂ Al
	Cu 2,6	

TRATAMENTOS TÉRMICOS, DIFUSÃO E FORMAÇÃO DE FASES EM SUPERCONDUTORES MULTIFILAMENTARES DE Cu+Nb₃AI

F. M. Negreiros, C. A. Rodrigues, D. Rodrigues Jr., CBECIMAT 2002, Natal, RN

 Image: Mb-Al tratado a 1050°C/5min+800°C/96h
 Signal A = QBSD
 WD = 15 mm

 Mag = 10.00 K X
 Signal A = QBSD
 WD = 15 mm

(b)

Figura 3. Micrografia obtida em MEV do primeiro embutimento após tratamento térmico a 1050°C/5min + 800°C/96horas: (a) região de filamentos, (b) identificação de fases relativas à Tabela II.

Tabela II.	Resultados	das	medidas	de	composição	por	EDS	das	diferentes	fases	presentes	no
	primeiro em	butim	nento trata	do	a 1050ºC/5mi	n + 8	300°C/	/96h	(Figura 3).		-	_

Posição	Composição (%at)	Identificação das fases
1	Nb 26,0	
	AI 72,9	NbAl ₃
	Cu 1,1	
2	Nb 40,6	Fase intermediária de
	AI 52,6	NbAl ₃ +Nb ₂ Al
	Cu 6,8	
3	Nb 67,7	Nb ₂ AI (provável)
	AI 30,9	(Existe diferença na composição devido à pequena
	Cu 1,3	dimensão da fase)
4	Nb 100	Nb puro

(a)

Development, Heat Treatment Optimization and Microstructural Characterization of Nb₃Sn Superconductor Wire

C. A. Rodrigues, J. P. B. Machado, D. Rodrigues Jr.; IEEE Trans. Applied Superconductivity, June 2003.

	1º Stop	2º Stor	2º Ston	49 Stop	5º Stop
	1 Step	2 step	5 Step	4 Step	5 step
	Temp./Time	Temp./Time	Temp./Time	Temp./Time	Temp./Time
Sample 1		360°C/50h			
Sample 2			480°C/50h		
Sample 3				575°C/50h	
Sample 4				575°C/100h	
Sample 5	220°C/100h	360°C/50h			
Sample 6	220°C/100h	360°C/50h	480°C/50h		
Sample 7	220°C/100h	360°C/50h	480°C/50h	575°C/50h	
Sample 8		360°C/100h			700°C/100h
Sample 9			480°C/50h		700°C/100h
Sample 10				575°C/50h	700°C/100h
Sample 11				575°C/100h	700°C/100h
Sample 12	220°C/100h	360°C/50h	480°C/50h		700°C/100h
Sample 13	220°C/100h	360°C/50h	480°C/50h		700°C/150h
Sample 14	220°C/100h	360°C/50h	480°C/50h		700°C/150h

i = 1.00 KX(a) (b)

Fig. 1. Microstructures formed after heat treatments for: (a) Sample 1; (b) Sample 5. Formation of *e* phase.

Fig. 2. Microstructures formed after heat treatments for: (a) Sample 2; (b) Sample 6. Formation of δ phase.

Fig. 3. Microstructures formed after heat treatments for: (a) Sample 3; (b) Sample 7. Eutectoid decomposition of γ phase.

Fig. 4. Microstructures of sample 4 before (a) and after (b) heat treatment, showing the complete conversion of the Sn cores into α phase.

Sn

Cu

Fig. 6. Microstructure and X-ray mapping found using SEM+EDS for sample 4. (a) SEM image using backscattered electrons; (b) mapping of Cu; (c) mapping of Nb; (d) mapping of Sn. It can be noted the better homogenization of Sn compared to sample 2 (Fig. 5).

Cu

Sn

FATIGUE 2002

MICROSCOPIC FEATURES RELATED TO FATIGUE CRACK GROWTH IN COMMERCIAL-PURITY TITANIUM

Luciana S. Rossino, Carlos A. R. P. Baptista, D. Rodrigues Jr., Fatigue 2002, Stockholm.

FIGURE 1 Representative SEM fractography of type A striation pattern (sample tested with R = 0.5 and a = 7.5 mm).

FIGURE 2 Representative SEM fractography of type B striation pattern (sample tested with R = 0.1 and a = 10.0 mm).

FATIGUE 2002

FIGURE 3 Representative SEM fractography of type C striation pattern (sample tested with R = 0.3 and a = 12.5 mm).

FIGURE 4 Fatigue crack growth rates and striation spacing.

SURFACE ANALYSIS OF DECIDUOUS TEETH AFTER SOFT DRINK ACTION

A. P. R. Alves; A. M. S. Lopes-Silva; D. Rodrigues Jr., MICROMAT 2002, Curitiba, PR.

Figure 1. Teeth after storing and brushing in water, (a) 41X and (b) 500X; and in acid soft drink, (c) 41X and (d) 500X. One control tooth is shown in (e) 41X and (f) 500X.

Laboratório de Microscopia Eletrônica Departamento de Engenharia de Materiais – FAENQUIL

20µm

Signal A = SE1 WD = 18 mm EHT = 20.00 kV DEMAR - FAENQUIL

Argamassa com latex Mag = 250 X

Argamassa com latex Signal A = SE1 WD = 18 mm Mag = 600 X EHT = 20.00 kV DEMAR - FAENQUIL