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Quantitative Metallography

QUANTITATIVE METALLOGRAPHY
(or, more generally, stereology) deals with the
quantitative relationships between measure-
ments made on the two-dimensional plane of
polish and the magnitudes of the microstruc-
tural features in the three-dimensional metal
or alloy. As material specifications become
stricter and performance limits are narrowed,
it becomes necessary to specify and control
microstructure quantitatively. This article
will review the important equations, the basic
measurements, and the applications of these
methods to pure metals alloys. Additional in-
formation on quantitative metallography, in-
cluding the use of automatic image analyzers
for determining microstructural characteris-
tics, can be found in the article “Color Metal-
lography” in this Volume.

Table 1 shows the principal symbols used
and gives examples of the combined notation
in common usage (Ref 1). The term Sy, for
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example, refers to surface area per unit vol-
ume and represents the fraction S/Vr, in
which the numerator is the microstructural
feature and the denominator (total test vol-
ume) is a test quantity. Each symbol repre-
sents a geometrical element and a specific di-
mension. Therefore, the dimensionality of the
combined terms and equations is readily ap-
parent and consistent.

Basic Measurements

ot ‘greatest interest are the simple counting
measurements, Pp, P;, N, P,, and N, be:
cause of the ease and speed with which these
data can be gathered. Several theoretical
analyses have elucidated cfficient sampling
techniques. With one technique, it is possible
to predict the number of measurements re-
quired to achieve the desired accuracy (Ref
2). This has been applied to the point-count

Table 1 Principal symbols and combined notations for quantitative metallography

Symbol Units Description Common name

P......... Number of point elements or test points e

Pp........ Point fraction (number of point elements per total number of test Point count

ints)

L....... mm Lenp;lt: of lincar elements or test line length

Py........ mm-!  Number of point intersections per unit length of test line
Sum of linear intercept lengths divided by total test line length Lineal fraction
Planar area of intercepted features or test arca
Surface area or interface area, generally reserved for curved surfaces
Volume of three-dimensional structural elements or test volume e
Sum of areas of intercepted features divided by total test area Areal fraction

volume ratio)

Number of features

Mean areal intercept, A4/ Ny

Note: Fractional p are exp
Source:

Surface or interface area divided by total test volume (surface-to-
Sum of volumes of structural features divided by total test volume

Number of interceptions of features divided by total test line length
Number of point features divided by total test area

Sum of lengths of linear features divided by total test area

Number of interceptions of features divided by total test area
Length of features per test volume

Number of features per test volume

Mean linear intercept distance, L;/N,

Mean particle surface area, Sy/Ny
Mean particle volume, V/Ny "~

d per unit length, area, or volume

Volume fraction
Lineal density

Perimeter (total)
Areal density

Volumetric density

method, which refers to the number of test
points that fall in some selected areal feature -
of the microstructure (such as a phase) on the
plane of polish.

The number of points, P,, that fall in the a
phase divided by Pr, the total number of test
points, gives the ratio P,/Pr, or Pp. Those
grid points that appear to fall on a boundary
can be counted as one half. This gives the
operator a guide to the magnitude of the ex-
perimental error.

-Figure 1 shows one type of point-count
grid (Ref 3) with the test points at the inter-
sections. Figures 2 and 3 show examples of
point grids selected for optimum results, de-
pending on- the type of microstructure to
which they are applied. Note that on average
not more than one grid point falls in any sec-
ond-phase area and that the grid spacing se-
lected is close to the diameter of the second-
phase particles. A grid can be inserted in the
eyepiece of the microscope, or a grid marked
on clear plastic can be used with a photomi-
crograph or a projection screen. For best op-
erator efficiency in counting, it is useful to

1

6 mm

fe—— 0.50 mm (typ)

Typical point-count grid. Figures 2 and 3
show applications. (Ref 3)
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H Application of point-count grids to graphite nodules in the ferrite matrix of two specimens of grade
Fig. 2, 3
19 £/ 9 504

5-12 ductile iron. Fig. 2: 2% nital. 100X, Fig. 3: 2% nital, lightly etched. 140X

A

b

(a) (b)

Fia. 4 (a) Grain-boundary traces in a typical single-phase alloy (Ref 4). (b) Circular (left) and parallel (right)
9. linear test grids for P, counts. Both types of grids may be used for measuring random structures like that
shown in (a); the grid ot right is applicable fo oriented structures such as the one shown in Fig. 5. (Ref 1)

Fia. 5 Elongated grain-boundary fraces in ex-
g. truded molybdenum; typical of oriented
structures measured with the grid at the right in Fig.
4(b). Etchant and magpnification not reported

limit the number of hits on any one applica-
tion of the grid to five or six. Therefore, a 3
by 3, 4 by 4, or 5 by 5 point grid suffices for
most applications, because the magnification
can be adjusted for a particular microstruc-
ture.

Another important measurement fre-
quently required in quantitative microstruc-
tural analysis is the number of points of inter-
section generated per unit length of test lines,
Py. A test line or linear array is applied ran-
domly to a microstructure containing linear
features, such as the structure drawn in Fig,
4(a). The points of intersection along the test
lines are counted as they are placed at several
positions and angles over the entire micro-

structure until enough intersections have
been counted. Figure 4(b) shows examples of

circular and parallel linear test grids for P,

counts (Ref 1). Both grids in Fig. 4(b) may be

used for random microstructures (such as the

one in Fig. 4a); the grid with radii spaced at
15° angular intervals finds application for di-
rectional measurements on oriented struc-
tures, such as the one shown in Fig. 5. The
total lengths of the circular and parallel linear
test grids are determined in advance to facili-
tate subsequent calculations.

Other basic measurements that involve
counting are Ny, P4, and Ny N corresponds
closely to Py, except that Ny is reserved for
objects (such as particles) instead of points
(for example, the intersections of grain-
boundary traces by test lines). Ny is defined
as the number of interceptions of particles
per unit length of test line. This definition
allows for the possibility that a particle with
an irregular outline may be intercepted more
than once by the same test line. Therefore,
the relationships P, = N,, for space-filling
grains, and P, = 2N, for isolated particles,
regardless of their shape, are maintained.

P, and N, are also related. P, refers to
points per unit area, and N, to objects per
unit area (see the nodules in Fig. 2). If the
grain junctions (triple points) in Fig. 4(a) are
counted as points, P = 59, and for a test area
Ay within the circle equal to 0.5 mm?, Py =
59/0.5 = 118 mm~2, A count of the grains in
Fig. 4(a) gives a value of N = 30.5 (counting
border grains intercepted by the circular pe-
rimeter as one half a grain each). Therefore,
N, = 30.5/0.5 = 61 mm~2,

When counting objects or points within an
area, care must be taken that none is over-
looked or counted twice. An open square grid
superimposed over the photomicrograph or

microstructure is used frequently to ensure
accurate counting. Figure 6 gives an example
of using a simple grain count to plot elonga-
tion and tensile strength as functions of the
number of grains, N, in the cross sections of
the specimens (Ref 5).

Two procedures using combined measure-
ments are described below. The older method
(Ref 6) was proposed to obtain the surface-
to-volume ratio of discrete particles. The par-
ticles are embedded in a suitable material,
then sectioned. In principle, short test lines of
length / are “thrown” randomly on the micro-
structure, as shown in Fig. 7(a). Two types of
points are counted: points of intersection
with the boundaries, P, and the end points
that hit within the second-phase areas, h. For
particles of a phase, the equation is:

S, 4P
—_— e e— 1
V. H (Eq 1)
where the mean particle surface area, S, TE-
fers to the mean particle volume, ¥,, not an
arbitrary test volume. Figure 7(a) illustrates
various counting possibilities, which, for a
test line / = 0.02 mm, gives S./ V., = (4 X 7)/
(5 X 0.02) = 280 mm~'. Figure 7(b) repro-
duces an excellent grid for these combined
measurements (Ref 7).

A combined method for obtaining the S/V
ratio of discrete particles has also been pro-
posed (Ref 8). Both a point count, Pp, and an
intersection count, P, are made simulta-
neously using a superimposed square grid, as
depicted in Fig. 8. The equation for individ-
ual, isolated particles is:
8, 2

V. Pp

For a system of particles in a matrix, the
equation is:

Sv)a _ 2P,
(VV)u P P

Assuming the numbers shown for the indi-
vidual particles in Fig. 8 represent average
values obtained after several random place-
ments of the grid and that the total unmagni-

(Eq2)

Table 2 Relationship of measured (O)
and calculated ([[]) quantities

Dimensions arbitrarily expressed in millimeters

Microstructural T Dimensions of symbol: 1
feature mm® mm-—! mm-~—2
POINIE: ovoisiinvas @

Lines . oaiahviisg @

Surfaces ........... (42) @
Volumes ..........

Basic equations
Vy = Ay = L, = Pp(mm°) (Eq 4)
Sy = (4/7) Ly = 2P, (mm~') (Eq 5)
Ly = 2P, (mm~?) (Eq 6)
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Fia. 7 (o) Chalkley method for determining the
G 7 uriace-to-volume ratio of discrete particles.
{b) A grid for combined point and infersection count.
(Ref 7)

| o Points counted for
Pe (6 points)

® Points counted for
P, (12 points)

Fi 8 Superimposed square grid used in the Sal-
9. ov method for determining the surface-to-
volume rafio of discrete particles. P» represents a point
count and P; represents an infersection count. (Ref 1)

fied grid length is 1 mm, then S7V = @2 X
12)/(6/36) = 144 mm™".
Basic Equations

The basic equations for points, lines, sur-
faces, and volumes in a microstructure are

l

Equivalence of areal, linear, and point ra-

Fig. 9 yios A, = L = Pn (Ref 1)

well known and well documented (Ref 1, 3,
8-11). Consequently, derivations will not be
given here. Instead, practical applications to
actual microstructures will be stressed.
Table 2 shows the interrelationships be-
tween microstructural features that can and
cannot be measured (Ref 1). Arrows indicate
those quantities that yield the normally inac-
cessible three-dimensional quantities ¥y, Sy,
and Ly. Below the triangular matrix are writ-
ten the corresponding basic equations.
Equation 4 in Table 2 states the equality of
volume fraction to the areal ratio, linear ra-
tio, and point ratio of the selected phase as
seen on random sections through the micro-
structure. The measurement of volume frac-
tion is usually most efficiently performed
with the point count, as illustrated in Fig. 1
to 3. Under unusual circumstances, areal ra-
tios can be obtained with a planimeter; linear
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ratios are commonly measured by means of a

. Hurlbut counter. Quantitative TV-scanning

equipment is being used increasingly for rou-
tine applications in which large numbers of
specimens make automation economically
feasible.

Figure 9 shows the interrelationship of
areal, length, and point measurements
through the equations A= L, = Pp(Ref 1).
The volume fraction is used frequently in
studies of metallurgical systems and phenom-
ena. Figure 10 depicts the relationship - be-
tween ductility and the volume fraction of
various dispersions in copper (Ref 12), and
Fig. 11 illustrates the application of volume-
fraction measurements to establish the phase
boundaries of a two-phase field (Ref 13).

Equation 5 in Table 2 combines two im-
portant equations, both of which require a P
measurement:

Sy = 2P, (m 5a)
L= —’2’— P, (Eq 5b)

When surface area per unit volume is re-
quired, Eq 5(a) is used. For example, total

15 r
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Fi 10 Relationship between ductility and the vol-
9. ume fraction of various dispersions in cop-
per. (Ref 12)
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Fig 11 Application of volume-fraction measure-
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ments to establish the phase boundaries
of a two-phase field. (Ref 13) o
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. Grain-boundary traces outlining the
Flg' 12 recrystallized grains of a single-phase .

palladium solid solufion. 10% KCN + 10%

(NH.)25:0s. 75X

grain-boundary surface area in a single-phase
alloy (Fig. 12) may be desired. Also, Sy could
be used for analyzing grain-boundary pre-
cipitates (Fig. 13 to 15), for transformation
products growing out of grain boundaries
(Fig. 16), or for obtaining the interphase
boundary area in a eutectic alloy (Fig. 17).

When linear traces in the plane of polish
are of interest, L, is the parameter of choice,
and Eq 5(b) would be used. In corrosion
studies, for example, the pertinent feature is
the length of grain-boundary traces exposed
to the corroding medium. In other studies,
the microstructural feature may be consid-
ered essentially linear, such as the thin twins
in Fig. 18. Here, in a P, traverse, each twin
intersected would be counted only once. Us-
ing the circular grid around the hardness im-
pression, curves of L, versus strain can be
calculated, as shown in Fig. 19. For other
twins, however, the total twin-matrix inter-
face length may be required. The interfaces
on each side of the twinned regions would be
counted separately, as in Fig. 20, and each

Fi 13, 14, 15 Precipitated particles in grain boundaries of three heat-resistant alloys. Fig. 13: Fe-35Ni-16Cr casting alloy. Hot alkaline potassium ferricyanide.
9. ’ r 250 . Fig. 14: RA 333, a wrought nickel-base alloy. 25 mL HCl, 10 mL methanel, 7 mL HNO;. 250X. Fig. 15: Waspaloy, also a wrought nickel-
base alloy. Electrolytic etch, H;504, HsPO4, HNO;. 10000X

time the twin was intersected by the test line,
it would count as two.

In Eq 6, for line length per unit volume
(Ly = 2P,), the points counted are those in
the test area caused by the intersections of
the test plane with the linear elements of the
microstructure. Equation 6 usually requires
only one test plane for linear elements that
are randomly oriented in space. However,
randomness in the microstructure is not es-
sential to Eq 6, because random sampling can
be ensured by selecting a random orientation
of the plane of polish.

Typical examples of linear elements in mi-
crostructures are dislocation lines, grain
edges where three adjacent grains contact,
needlelike precipitate particles, and slag or
oxide stringers. Figure 21 shows dislocation
etch pits, which are counted (P,) to get the
dislocation density (Ly). Figures 4(a) and 12
represent single-phase materials with the
grain edges revealed at the junctions of grain-
boundary traces. Taese triple points are
counted (P,) to find the length of grain-
boundary edges (Ly). Figure 22 shows elon-
gated, essentially linear, nonmetallic inclu-
sions that can also be analyzed according to

Eq 6.

Oriented Structures

Although the basic equations (Eq 4 to 6)
apply to any microstructure, special equa-
tions.are available for special types of micro-
structures (Ref 1). For example, oriented sys-
tems of lines or surfaces may be encountered,
and the directional characteristics, in addi-
tion to the mean values, may be desired. In
such cases, transverse or longitudinal sections
or both are used instead of random sections.

Next, systems of oriented lines in a two-
dimensional plane, systems of oriented lines
in three-dimensional space, and systems of
oriented surfaces in three-dimensional space
are discussed. The oriented systems can also
be described as completely oriented systems,
in which all elements are parallel, or as par-

tially oriented systems, in which random and
oriented elements occur. In both cases, how-
ever, orientation directions are clearly de-
fined and recognizable; in fact, several orien-
tation systems can exist in the same
microstructure, each with its own orientation
direction or plane.

Examples of systems of oriented lines in a
plane are provided by twin traces in the plane
of polish (Fig. 20), dislocation lines in the
surface of a silicon crystal (Fig. 23), and
grain-boundary traces in extruded molybde-
num (Fig. 5).

The three equations applicable to these
partially oriented systems of lines in a plane
refer to the random (ran) and oriented (or)
portions of the system of lines as well as to
the total (tot) length per unit area. They are:

(La)ran = LSTUPLY (Eq 7a)
(L) = (Pp)s — (P (Eq 7b)
Lyt = (Pr)L + 0.571(PL) (Eq 7¢)

where the (P.), and (P.); measurements are
made with test lines perpendicular and paral-
lel to the orientation direction, respectively.
Note that (Lo = Ladm + (Lo Of
course, if the system of lines is completely
oriented, (P); will be zero and (L)or = (L)t
= (Pp..

The twin traces in Fig. 24 represent a sys-
tem of lines in a plane with essentially four
orientation directions. A grid of parallel test
lines (such as the one at right in Fig. 4b) is
applied perpendicular to each orientation di-
rection, in turn, and the intersections with the
twins perpendicular to the test lines are
counted. If the twin traces are assumed to be
completely oriented, then (L,)or = (P1)., and
the line length is obtained directly for each
orientation direction as a function of angle
from a reference line. Figure 25 summarizes
the results obtained in this way.

Many common microstructures have ‘fea-
tures that can be described as a system of
oriented lines in space (that is, throughout
the alloy). Examples are elongated nonmetal-




lic inclusions (Fig. 22), parallel rods in unidi-
rectionally solidified eutectics (Fig. 26), and
oriented dislocation arrays (Fig. 27 to 29), all
of which show pronounced linear directional
characteristics.

For a partially oriented system of lines in
the alloy:

e Particles of FesC nucleating at grain
F’g‘ 16 boundaries of secondary-recrystallized
3.25% silicon steel strip. Nital. 1000X

Fi 17 Interfaces between phases in a reversible-
9g- matrix, aluminum-copper eutectic alloy.
Etchant and magnification not reported

Fi 18 Circular grid superimposed on @ micro-
9. graph, showing twinning around a hard-
ness impression in as-cast Mo-12.50s alloy. See also
Fig. 19. Etchant and magnification not reported. (Ref

14)

(LV)un = Z(PA)I (Bq 8?)
(L) = (Pa)L — (Pa)y (Eq 8b)
(L) = (Pa)r + (Pa)y (Eq 8¢)

where (P,4), and (P,), refer to measurements
of point density on plnanes perpendicular and

20
Min twinning
strain, %

18— o 0.085 (/

" ® 0.145 / 40 at.% Re
A 0.165

E 61— 40180 7
£ 35/
== 1k
3 / /
8 12 / /
@
5 / / 2/
o / 4 /
(=
g o / / /
=
£ y
5 / 2% L~
£
§ 4/
H
-

: / / ’/

0

0 0.2 0.4 0.6 08 10 12 14

Calculated compressive strain (e), %

Fig 19 Application of data obtained with the aid
. of circular grids around hardness, impres-
sions to calculation of compressive strain in cast ¢hro-
mium-base alloys containing various amounts of rhe-
nium. (Ref 14)

=

T Twinned structure in a lightly etched Mo-
FI' 20 35Re single crystal. Etchant and magnifi-
cation not reported

Etch pits due to dislocation lines in -cop-
per. Etchant and magnification not re-

Fig. 21
ported. (Ref 15)
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parallel to the orientation direction, respec-
tively. If the system of lines is completely ori-
ented, (P,); is zero, and (Ly)sr = (Py)y1. Al-
though some microstructural features are not
truly linear, they can be considered so for
practical purposes if they have sufficient lin-
earity. Of course, if the cross-sectional thick-
ness is too great, the (P,); measurements will
be difficult to make.

H Elongated sulfide inclusions in free-cutting
Fig. 22 | 709303 fhainess steel bar (0.25% S).
Longitudinal section. As-polished. 250X

Dislocation lines in (111) surface of silicon
Fig' 23 crystal. Etchant and magnification not re-
ported. (Ref.16)

. Twinned structure in a heavily etched Mo-
Flg' 24 35Re single crystal. Etchant and magnifi-
cation not reported %:‘f"i. -
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Another major type of oriented structure
- consists of surfaces in the alloy. Examples of
oriented planar features in the microstructure
are pearlites in steel (Fig. 30), lamellae in uni-
directionally solidified eutectics (Fig. 31), and
lamellar precipitates observed by thin-foil
electron transmission microscopy (Fig. 32).

These oriented surfaces are subclassified as
planar orientation, because the planar sur-
faces are essentially parallel to an orientation
plane (or planes). The three equations appli-
cable to a partially oriented system of sur-
faces with planar orientation are:

(S¥)ean = 2(Pp)) (Eq 9a)
(S¥)or = (Pr)L — (Po)y (Eq 9b)
(Svhot = (Pr)L + (Pr) (Eq 9¢)

= =
m o
I

La(8), mm/mm?
[--]

90 120 150 180 210 240 270 300

o -

0 30 60

Angle 8 from reference line

. Twin-trace length as a function of angle
Fig. 25 (4 Shructure shown in Fig. 24. (Ref 14)

Fig. 26 Transverse section through parallel rods in
9. a unidirectionally solidified Mg-32Al eu-
tectic alloy. Growth rate was 1.5 X 1072 mm/s (6 X
10~4 in./s). Temperature gradient was 3.7 °C/mm
(1.7 °F/107%n.). Etchant and magnification not re-
ported. (Ref 17)

where (P;), and (Pp); are measurements
made perpendicular and parallel to the orien-
tation plane, respectively. If the system of
surfaces is completely oriented, as in portions
of Fig. 32, (Pr) is zero, and (Sy)er = (Pr)1.

A sequence of extruded beryllium speci-
mens with different initial powder sizes exem-
plifies the analysis of a system of partially
oriented surfaces (Ref 1). The essential data
are as follows:

Initial powder
Specimen size, mm  (Py),, mm-1 (Fp); mm-1
V s siatdivmaite sl dans 0.004 164.8 115.0
2 o iide s A e A 0.100 104.2 69.5
B i A R 0.250 69.0 56.8

Assuming planar orientation, substitution
in Eq 9(b) and 9(c) shows that for specimens
1, 2, and 3, respectively:

(S = (Pr)r — (PL)\l

164.8 — 115.0 = 49.8 mm~!
1042 — 69.5 347 mm~!
69.0 — 56.8 12.2 mm-!

Il

and
St = (P + 2 D
= 164.8 + 115.0 = 279.8 mm~!
= 1042 + 69.5 = 173.7 mm™!
= 69.0 + 56.8 = 125.8 mm™!
The fractional, or percentage, amount of

lanar-orientation, represented by & is
(SV)nr/(SV)wu or:

498

i = 17.8%
279.8
347

= —— = 200%
1737
122

=——=97%
125.8

for specimens 1, 2, and 3, respectively. The
results suggest that some mechanical proper-
ties may fall out of sequence even though the
mean grain intercept length (equal to the re-
ciprocal of Py) varies directly with the initial
powder size.

Where the grains (or particles, inclusions,
or precipitates) are markedly elongated, a
shape index may prove useful. One of the

simplest indices to express elongation is the’
ratio of mean length to mean width:

Dy {Ppi

= = 10
D, (Py, i Bl
Using the data given above for extruded be-
ryllium specimens, Eq 10 becomes:
o = P
(Po)y
1648
115.0

1.43

=— =121
56.8
for specimens 1, 2, and 3, respectively. For
equiaxed grains, of course, Q-ratios closer to
unity would be expected.

Lamellar structures perhaps most typically
exemplify oriented surfaces. A measure of the
fineness of lamellae (as in pearlite, for exam-
ple) is the so-called interlamellar or true spac-
ing, S,, defined as the perpendicular distance
across a single pair of contiguous lamellae.
Because the true spacing is difficult to deter-
mine directly, the mean random spacing, o,
defined as:

1
g=— Eq 11

N (Eq 11)
where N, is the number of alternate lamellae
intersected per unit length of random test
lines, is measured instead. The true spacing
can then be found according to Eq 12, which
has been confirmed experimentally:

(Eq 12)

Figure 33 illustrates three types of spacings
and three types of distances. Spacings are es-
sentially center-to-center lengths; distances,
edge-to-edge lengths. The interlamellar dis-
tances are related to the spacings through the
linear intercept ratio (L;) as in:

A= (L)o (Eq 13)
or by the mean intercept length (L;) as in:
L3 =g = A

(Eq 14)

Fig 27. 28, 29 Oriented dislocation arrays in thin foils. Fig. 27: copper. (Ref 15). Fig. 28: iron. (Ref 15). Fig. 29: Armco iron. (Ref 18). Etchants and magnifications
. r ’

not reported




- Replica electron micrograph showing la-
Flg' 30 mellar pearlite in a 1090 hot-rolled steel
bar. Picral. 2000X

The subscript 3 refers to the three-dimension-
ality of the parameter. Finally, it is noted
that:

4

ag

Sy = (Eq 15)
where Sy is the lamellar interface area per
unit volume.

Grain sizes, or diameters, have been deter-
mined by several methods. Because the grains
normally found in alloys have irregular
shapes, the definition of a diameter is usually
arbitrary.

Fortunately, a general, quantitative length
parameter provides a unique, assumption-
free value for any granular, space-filling
structure, regardless of grain shape, size, or
position. This length parameter is the mean
intercept length L, obtained from simple L,
intercept measurements on the plane of pol-
ish. For many random planes, of course, the
averaged L, values become the true, three-di-
mensional L, parameter.

For space-filling grains, the mean intercept
length is defined as:

L 16
_NL_PM (Eq )

where N, has been described above. In es-
sence, L; equals the total test-line length, Ly,
divided by the magnification, M, and the
number of grain-boundary intersections, P (P
equals N for space-filling grains).

When L, is expressed in millimeters, it
gives the same value as the intercept proce-
dure described in ASTM specification E 112
(Ref 4). This specification also is the basis for
the ASTM grain-size number N, defined as:

(Eq 17)

L;

N = 8% 4 10000
log2
where n is the number of grains per square
inch at 100X (n is equal to N, in the notation
of this article). Normally, to obtain the
ASTM grain-size number, at least 50 grains
in each of three areas must be counted, the
number per square inch must be determined,

Lamellae in a unidirectionally solidified
aluminum-copper eutectic alloy. Etchant
and magnification not reported. (Ref 1)

Fig. 31

and this value must be converted to its equiv-
alent at 100X . Then, substitution in Eq 17 or
recourse to tables gives ASTM N.

A particularly quick and useful method for
determining an equivalent ASTM N uses the
P, count (Ref 20). Provided are two circular
test figures of known lengths, as depicted in
Fig. 34 (not shown to size). The test circles
can be reproduced on plastic sheet (for ana-
lyzing photomicrographs) or placed on the
ground glass screen of a metallograph. The
best method is to use the test circle as a reti-
cle in the focusing eyepiece of a bench micro-
scope.

The operator selects one of the circles and
a magnification for the specimen that will re-
sult in more than six intersections per appli-
cation of the circle, on the average. For
equiaxed grains that do not vary much in
size, the circle is applied to the microstruc-
ture until about 35 intersections are obtained,
ensuring that a standard deviation of 0.3
units in G, the equivalent grain-size number,
is obtained.

To calculate G, the equation is:

G = —1000 — 6.64logL; (cm) (Eq 18)

with:

Iy= =k (Eq 19)
PM

where P is the total number of grain-bound-
ary intersections made by a test circle laid
down several times to give a total length, Ly
(in centimeters), on a field viewed at any
magnification, M. To demonstrate the opera-
tion of Eq 18, suppose that a 10-cm (4-in.)
circle is applied four times to a microstruc-
ture at 250X, totaling 36 intersections. G
then equals —10 — 6.64 log [40/(36 X 250)]
or 5.6. Thus, the equivalent grain-size number
is obtained directly and efficiently, because
no more intersections are counted than re-
quired to ensure the desired accuracy. A
nomograph for the graphical solution of Eq
18 is reproduced in Fig. 35.

Particle Relationships

Many of the relationships pertaining to
particulate structures apply with equal valid-
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. Thin-foil transmission electron micrograph
Flg' 42 showing lamellar precipitate in Fe-30Ni-
6Ti alloy. Magnification not reported. (R.C. Glenn)

Center-to-center spacings Edge-to-edge distances

S, True spacing A, True free distance
S  Apparent spacing A Apparent free
o Intercept spacing distance
A Intercept free
distance

= Schematic presentation of three types of
Flg' &3 spacings and three types of distances in a
lamellar structure. (Ref 19)

ity to second-phase regions, voids, and
boundary precipitates. One important gen-
eral relationship involves the mean free dis-
tance, A, which is the mean edge-to-edge dis-
tance, along random straight lines, between
all possible pairs of particles (Ref 1). For
a-phase particles, the mean free distance is:

_ 1= (W
N,

A (Eq 20)

where (V), is the volume fraction of the a
particles and N, is the number of particle in-
terceptions per unit length of test line. Equa-
tion 20 is valid regardless of size, shape, or
distribution of the particles and represents a
truly three-dimensional interparticle distance.
This parameter is important for studies of
strength and other mechanical properties and
has been used in several different ways as in-
dicated in Fig. 36 and 37.

There are other types of interparticle dis-
tance and spacing parameters, such as the
mean particle spacing, o, which is essentially
the mean particle center-to-center length. The
defining equation for mean particle spacing
is: o
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Fia. 34 Hilliard's circular test figures for measure-
9. ment of grain size. The size of the circles

indicated here is svitable for the ground-glass screen of
a metollograph.

1
0o=—
N,

where N is the number of particle intercep-
tions per unit length of random test lines. The
parameter o is characterized by how easily it
can be measured, because only a simple parti-
cle interception count is needed. It is also re-
lated to A through the mean intercept length,
L,, by the equation:

A=0— (L (Eq 21)

where (L,), for particles of a phase is defined
by (Ls)a = (Lr)o/Ny. This is a general and
assumption-free expression, valid for parti-
cles of any size or configuration.

The mean particle intercept length, (L;),, is
a companion term to A, in that A is the mean
matrix ‘intercept distance and (L), is the
mean particle intercept distance. They are re-
lated through the expression for a two-phase
or particulate structure of a phase by:

; b= (V)
= (L), J]
L (V)

where A is the mean free distance between
particles that have a volume fraction (Vy),
and mean intercept-length (L,),. Equation 22
has been used to verify the value of volume
fraction in a two-phase alloy, such as in Fig.
38. Size and configuration of the dark second
phase can. be varied readily by heat treat-
ment, but the volume fraction remains rela-
tively constant. Therefore, the (constant) vol-
ume fraction obtained from the slope of the
curve for A versus (L;), (73.2 vol%) corre-
sponds well with the volume fractions deter-
mined by point counting: (73.5 vol%) and
from chemical analysis (71.4 vol%).

Note that the mean intercept lengths for
space-filling grains and for particles are re-
lated through the general expression:

(Eq 11a)

(Eq 22)

(Eq 23)

In single-phase alloys, L, (or Vy) = 1, and Eq
16 is obtained. For two-phase or particulate
alloys, L, (or V) has a value less than 1, and
Eq 23 is used. Also, 2N, = P, applies to par-
ticulate systems, whereas N, = P, applies to
the single-phase alloys.

An example of the application of the mean
intercept lengths is seen in the well-known
relationship: -

s (Bq 24)

3Vy

where R is the grain radius and r the particle
radius. Experimentally, L; and (L), were ob-
tained and used for the grain diameter and
particle diameter, respectively; results are
shown in Fig. 39. The agreement between cal-
culated and measured grain sizes is consid-
ered good.

From the above discussion of grain and
particle characteristics, it is evident that there
are many points of similarity in their geomet-
rical properties. On the plane of polish, the
grain boundaries and particle interphase
traces are measured by L, or L, (the perim-
eter length); the intercept distances for both
grains and particles are expressed by L, or
L;; and the surface area per particle or grain,
S/V, and the surface area per unit volume of
specimen, Sy, apply equally to both volume
elements.

However, because the grains. are space fill-
ing, all grain boundaries are shared by two
contiguous grain faces; particles, on the other
hand, do not usually occupy 100% of the al-
loy. Therefore, sharing of particle boundaries
does not occur as often. To emphasize these
differences, Table 3 summarizes the pertinent
equations for planar figures, arca-filling and
separated; the same information for grains
and particles is in Table 4. In general, the
quantities in the second and third columns of
each table are double those in the first col-
umn, except for the P, measurements.

The parameters defined in Tables 3 and 4
apply equally to-interpenetrating two-phase
structures and to simple particulate systems.
In one study a series of beryllium-aluminum
alloys (similar to the alloy shown in Fig. 38)
was investigated for possible correlations be-
tween microstructure and mechanical proper-
ties. ‘Mechanical properties correlated well

_with such microstructural quantities as A, Ls,

L,, and V. However, to assess the effects of
heat treatment, a new parameter was devised
to consider the gradual smoothing of inter-
phase boundaries at higher temperatures.
This new parameter, called the “complexity
index” (CI), is defined by:

_ 5L

Da

where L,, the mean perimeter length of alu-
minum islands, is equal to L,/(N,)a, and
(A)a, the mean area of aluminum islands is
equal to (A)a/(Na. Therefore, for the
complex, jagged interphase traces, L, (and
CI) is large; however, for smooth, rounded
phase areas, L, (and CI) is small. Dividing by
(A)a normalizes L, in terms of the island size.
Note that this is not a dimensionless param-
eter, but has dimensions of reciprocal length.

Plotting the complexity index against elas-
tic modulus, yield strength, hardness, or elon-
gation yields satisfactory correlations of the
experimental data. The most striking results
are found with the elastic modulus and yield
strength of extruded alloys, with and without
annealing; typical curves are shown in Fig. 40
for alloys of three compositions. As a result
of this type of curve, patent claims were made
for alloys with complexity indices between 1
and 5 per micron. Out of 18 claims in Ref 24,
seven were based on complexity index and
other quantitative microstructural param-
cters.

(Eq 25)
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Fig. 35 Nomograph for obtaining ASTM grain-size numbers. (Ref 20)
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the mean free distance between cementite
particles. (Ref 21)

Particle-Size Distributions

Several methods are available for obtaining
the spatial size distribution of spheres from
the size distribution of their planar sections.
Procedures are also available for convex par-
ticles of arbitrary shape (Ref 8), ellipsoids
(Ref 25), pentagonal dodecahedrons (Ref 26),
a statistical grain shape (Ref 27), and the
spacings in lamellar structures (Ref 28). Al-
though the equations for the simpler particles
provide statistically exact solutions, this is
not the case for size distribution of real parti-
cles with irregular shapes. Consequently, as-
sumptions are required, with a corresponding
loss in the accuracy of the results.

The three main types of measurements
made on planar sections are the section diam-
eters, section areas, or section chords. These
are depicted in Fig. 41. From the resulting
two-dimensional size distribution, the true
spatial size distribution of particles or of
grains can be calculated.

Frequently, however, the size-distribution
curve is not necessary to characterize a mi-
crostructure. In fact, numerical parameters,
not a curve, are required to relate the size
distribution to some material property. Gen-
erally, representing a size-distribution curve
requires only the mean diameter, D, the stan-
dard deviation, o(D), and the number of par-
ticles per unit volume, Ny. These parameters
can be obtained from the analysis of the par-
ticle-size distribution or, in some cases, di-
rectly from the appropriate experimental
data.

A comparison is made in Table 5 of se-
lected methods for obtaining the spatial size
distribution of systems of particles with spe-
cific shapes. Methods that deal with non-
spherical particles are noted, as are those that
employ nonanalytical solutions. The unusu-
ally simple methods are given in Ref 8 and
29. The procedures involved in the calcula-
tions of size distributions will be briefly dis-
cussed.
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Table 3 Equations for two-dimensional planar figures

Area-filling grains Planar sections of Isolated single
of one phase a phase in a matrix figure
Ay =1 (Ag), <1 Area = A
L
Lo
o
N 1
L \_/
2 E J L J
[ Ly
il | Ly
No=thh+4+Wn=5 No=4 Ne=12...
PL=5 PL=8 PL=24,...
Py=Ng= /L, Py = 2Ny = AAy) o/ Ln Py = 2Ny
Saltykov equations
- Ly =P
LA_EPLz_HL (LA)H:EPL=”NL ;*E
Tomkeieff equations
A L] wA A A
Ly= e Iy=—2= M L=—
L, 2L4 Lp)a  (Lada
Chalkley equations
lh h wd, th nd
= — g == — l,z=—=—
2P P (L) 2 I

Ly
L, = mean perimeter length per planar figure = Ls/Ny

L, = mean intercept length of planar figures = Li/Ny = A4/Ny

I = constant length of short test lines, thrown randomly on microstructure
h = number of (end) points of / lines that hit in area of interest
P = number of intersections with perimeters made by / lines
Ly = length of test line
Source: Ref 1
1
E
E
=
@
g 10!
3 la
2
$ >N
b= :
&
8 102 Slope = —3 .\o
E A
& 5
]
£
©
o
102
0°* 102 10°? 10

Strain rate (¢), h~!

H Strain rate of copper-aluminum dispersion
Flg° 37 alloys as a function of mean free distance
between particles. (Ref 22)

The first method is based on relative sec-
tion areas, A/ Ay, from the planar distribu-
tion curve of sections through a sphere. It
also applies to any system of convex particles
of one shape. A logarithmic scale of diam-
eters is used with the factor 10-%! = 0.7943.

H Interpenetrating two-phase beryllium-alu-
Flg‘ 38 minum alloy. Etchant and magnification
not reported

Therefore, for sectional areas, the factor is
(10-01)2 = (.6310. Table 6 gives group num-
bers, the corresponding diameters, and the
relative section-area limits required for the
class intervals. T
Because the section area is specified in
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terms of the largest section area, many sec-
tions must be examined to obtain the correct
volume of An,. Next, the sections per unit
area (N,); are counted, then grouped accord-
ing to the area limits specified in Table 6. A
series of graded circles serves this purpose
quite well. These values are then substituted
in the working equation, which has precalcu-
lated coeflicients and provisions for 12 class
intervals. The equation is:

1 ;
0] V);=B;[1.6461(NA),—0.4561(NA),-,

—0.1162(N 0)i-2—0.0415(N,0);—3— 0.0173(N.1);-4
—0.0079(N 1)i—s —0.0038(N.¢);—s— 0.0018(N.¢);—7
—0.0010(N,)i—5—0.0003(N.1)—s —0.0002(N.1);- 10

-o.oooz(N,),_..] (Eq 26)

where (Ny), represents the number of parti-
cles per unit volume in the jth class interval,
and j is an integer with any value from 1 to
12. The largest particle size corresponds to a
value of j = 1. The i values for the sections

Table 4 Equations for three-dimensional grains and particles

Space-filling grains Dispersed particles Isolated single
of one phase of a phase in a matrix particle
Vy =1 Wl <1 Volume = V
Ly
(13
Ly « >/
./
La L
Ly
Ly Ly
Ne=Wa+4+1=5 N, =4 Ne=12...
PL=5 P.=8 PL=24...
P, = NL = l/LJ P[_ = 2N, = 2(Vy)¢/L3 PL = ZNL
Saltykov equations
Sy= 2PL=2NL (SV)¢=2PL=4NL S_ZPL
V P
Tomkeieff equations
v 2 4v, Vi)a
Ly=2—=— Lg———-«y) Ly =4-
S Sy Se  (Sva s
Chalkley equations
th h 4V, h 4y
Ly = — 3= —=— Lyi=—=—
S 2P P s, P

Sa = mean surface area of a particles = (Sy) o/ Nv

L; = mean intercept length of three-dimensional bodies = L,/N, = Aa/N, = Vy/N,

! = constant length of short test lines, thrown randomly on microstructure
h = number of (end) points of / lines that hit in phase of interest
number of intersections with surfaces made by / lines

o]
(I}

length of test line
Source; Ref 1

Table 5 Comparison of methods for obtaining size distribution of particles with

specific shapes

Characteristics
Method. Particle shape of method(a) Remarks *
Diameters
DeHoff ........c.oovvveiiiiiininnn, Ellipsoids T, 1 Uses axial ratios; shape factors
obtained from curves
Scheil and Wurst ...........ollLl Statistical grain T,S Based on ingot iron grains
shape
Schwartz-Saltykov.................. Sphere T, 1 -
Paulus...........cccoveennnannn. Pentagonal T,C,L,S Method based on d/dy,, distribution
dodecahedron curve
Areas
Saltykov ..........coiiiiiiiin Spheres, convex WE, L, L Method based on A/An distribution
particles curve
Chords
Lord and Willis .................... Sphere G,1 e
Cahn and Fullman ................. Lamellar structures G, 1 Slopes taken from experimental
distribution curve
Bockstiegel ...................o.ll Sphere WE,L L No coefficients required in simplified
version
(a) T = table of coefficients quired; G = graphical method of solution; WE = only working equation needed; C = curve comparison
hod lable; I = indep lcul of each class interval; S = sequential calculations required; L = logarithmic scale




depend on the particular sphere size, or j
value, chosen for calculation. Therefore, as
each value of j is selected, i is set equal to j;
this determines the number of terms used in-
side the brackets. For example, to calculate
the value of (Ny)s, the first five terms in the
brackets would be used: fori = 5,i — 1 = 4,
i—-2=3i—-3=2adi—4=1

To show how the calculations are made,
(Ny)s will be determined from the data given
in Table 7. The equation obtained in this case
forj=4(=i)is:

1
(N = —D—-[1.6461(NA)4 — 0.4561(N,);
4

— 0.1162(N ), — 0.0415(NA),] (Eq 27)
Substituting the experimental data,

1.65(230) — 0.456(253)

Ny = ——

0.0316
— 0.116(161) — 0.0415(104)

= 7630 mm~3 (Eq 28)

is obtained. This type of calculation would be
performed for all particle sizes, and the total
would give Ny, the total number of particles
per unit volume. The results from the calcula-

Table 6 Limits for grouped planar
sections from spheres .

Relative section Relative section
diameter, d/dpq, aren, A/Apg

1.0000-0.6310
0.6310-0.3981
0.3981-0.2512
0.2512-0.1585
0.1585-0.1000
0.1000-0.0631
0.0631-0.0398
0.0398-0.0251
0.0251-0.0158
0.0158-0.0100
0.0100-0.0063
0.0063-0.0040

Table 7 Measured distribution of ferrite
grain section sizes

Relative Sections
Class Range of section section area per mm3,
interval diameters, d, mm AlApn (Na)i
1.........0.0631-0.0501 1.0000-0.6310 104
2.. .0.0501-0.0398 0.6310-0.3981 161
3.. .0.0398-0.0316 0.3981-0.2512 253
4. .0.0316-0.0251 0.2512-0.1585 230
5. . 0.0251-0.0199 0.1585-0.1000 138
6.........00199-0.0158 0.1000-0.0631 _69
NePermm? ....ooo.ooiiiiiiinninnnnnananeses 955
Table 8 Calculated distribution of
ferrite grain sizes
No. of grains
per mm3, (V)
2713
4341
8313
7630
3359
491
........................... 26 847

Areas

Diameters

Fig. 41

planar sections. (Ref 1)

tions are summarized in Table 8. This
method is simple and useful. Of further inter-
est is the possibility of analyzing systems of
convex particles of more complex shape.

It may be useful to express the size distri-
bution in terms of the three numerical param-
eters D, o(D), and Ny, instead of the size-dis-
tribution curve itself. The mean diameter is
expressed by:

— 1

=5, WD (Eq 29)
the standard deviation by:
o(D) = ['D? - ﬁ]m (Eq 30)

and the total number of particles per-upit vol-
ume by:

7
Ny = 2 (Nyy (Eq 31)

Therefore, from the data in Table 8, D =
0.0393 mm, o(D) = 0.012 mm, and Ny = 27
000 mm~3. An alternative is to plot the cumu-
lative percentages of (Ny); versus particle di-
ameter on log probability graph paper. If the
size distribution conforms to the log normal
distribution, as most particle and grain-size
distributions do, a straight line will result.
Then the values of D and o(D) can be read
from the curve—D at a cumulative frequency
of 50, and o(D) between 84.13 and 50 or be-
tween 50 and 15.87.

Another method for obtaining a particle-
size distribution involves measuring the inter-
cept chord-length distribution (Ref 1). Con-
sidering ease of data gathering, the chord
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Chords A

Schematic presentation of three main types of measurements (diameters, areas, and chords) made on

methods are quite promising, especially since
the advent of electronic scanning devices. An
improved derivation of the chord-intercept
relationship for spheres is given in Ref 29.
The number of chords per unit length, (n.);
(nL): + 1, and so on, are obtained experimen-
tally and grouped into suitable class intervals,
li_itol,§tol, and so on, respectively. To
obtain (Ny): + 12, which represents the num-
ber of particles per unit volume with diam-
eters between /,_,, and /4,2, the general
equation is:

- 4 (nL);
Ny)i+1n = ; Ty

(nL)i+ ]
Iiz+l -5
(Bq 32)

which is valid for any class-interval division.
Note that Ny can be obtained independently
for any size group and that tables of coeffi-
cients are not required.

A further simplification of Eq 32 is possi-
ble by defining logarithmic class intervals
such that /,,, = zl. Putting z = /2 gives
2y = 28, 12 = 2]3_,, and so on, which,
when inserted into Eq 32 gives:

2(ny); — (n)inr
)

where C = 4/7 I3 and is a constant indepen-
dent of i, and J is the upper limit of the low-
est class interval. If relative values, (Ny); +1/
Z(Nv)i « 112, are desired rather than.absolute
numbers, (Ny); + 1/, constant C cancels out.
Therefore, the relative size distribution is ob-
tained from the experimental data.

As an example of the application of Eq 32,

Nis1n=C (Eq 33)

Table 9 Properties of a sphere, truncated octahedron, and convex particles

Sphere, Truncated octabiedron, General equations
Property D=2 edge length = @ for convex particles
| 2N 4mr’/3 11.31443 V =A'Ly = AH'
1 4art 26.785a2 S =44' = 4V/L,
7 wr? 6.696a% A =8S/4a=V/L
- P 2r 3.0a H = V/IA = ALj/A
A i 2ar2/3 3.77a2 =VIH = A'LyH
2 4r/3 1.69a Ly = 4V/S = AN4/NL
[ N C:) B r = 2N /wNy4 a = 045N./N, p=H'/2 = NJA'I2N, = A'/2Ly
Ny ceiiiiiiiiiiinaneenans ﬂN}MNL 0.744N:/N,, Ny = NyJ/H' = NJ/A

General equation: ¥y = NyV = Nyd = N L3
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Projection

Spatial

Section

S =aa’
A=ty L

V=A-D=A"L

Ly = 4vS A=Ll,rd No=Nyd
D=H L, = AL, Na=Ny-D
Ly=L, d=Ljn  Ny= NJA

Relationships among convex particles in space, their sections, and their projections {projected quan-

ng' 42 fities are indicated by primes)

consider the case for i = 4 given the follow-
ing data:

Range of chord Chords per ram, Diameters of

Group lengths, mm o) particles, mm
4.0 0.0075-0.0100 19 0.0100
| 0.0100-0.0125 13 0.0125

Substitution in Eq 32 gives:

_4 19
Nv)isin = —} —————
7| (102 — 7.5910-¢

N 13
(12.52 — 102)10-6]

=i[( 9 13
m|\43.75 56,25)106] ’
= 259000 mm~3
Calculation at i = 4 according to Eq 33 re-

sults in:
(2 X19) — l3] _ C(_ZE)
) 16

= C(1.56)

This result would be divided by Z(Ny); + 12 tO
obtain the relative particle frequency ati = 4.
Occasionally, negative values are obtained
for the smallest particles. Reasons for this are
discussed in Ref 1. A practical solution is to
equate the negative values to zero.

Nz =C

Projected Images

In general, microscopists encounter two
types of projected images. In the first, the
image results from a transmitted beam
through the specimen, representing the fea-
tures located within the three-dimensional
space (such as by thin-foil transmission elec-
" tron microscopy). In the second, the pro-

jected image is generated by a reflected beam-

from the external surface of the specimen
(such as by scanning electron microscopy).

Only the most rudimentary quantitative
calculations can be made on images projected
by the refiection techniques (Ref 30). In
rough surfaces, the intensity levels depend on
topography, and some features may be
masked by others. Three-dimensional charac-
terization is based on the photogrammetric
analysis of stereopairs, for which automatic
image-analyzing techniques are not yet avail-
able (Ref 31).

Quantitative statistical treatment of trans-
mitted-beam images, however, has matured
to a much greater extent. These analyses (Ref
32, 33) are too lengthy and complex to be
treated here, but are described in the litera-
tuse (see Ref 1).

One final topic will be included, because of
its importance to the analysis of particulate
systems. Figure 42 provides interrelated gen-
eral equations of convex particles that ex-
press the important spatial parameters in
terms of measurements made on the plane of
polish and the projection plane. Application
of the equations to specific particles is sum-
marized in Table 9 for the sphere, for the
truncated octahedron (or tetrakaidecahed-
ron), and for convex particles in general. Ta-
bulations of the type presented in Table 9
permit the microscopist to approximate mi-
crostructures with particles of known shape
when other techniques are not feasible.
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