

Diagramas de Fases

Diagramas de Fases

Vamos tentar responder... Quando nós combinamos dois elementos... que estado de equilíbrio teremos?

- Em particular, se nós especificamos...
 - -- uma composição (por ex., %peso Cu %peso Ni), e
 - -- uma temperatura (T)

então...

Quantas fases teremos?

Qual a composição de cada fase?

Quanto de cada fase teremos?

Limite de Solubilidade

Introdução

- Soluções soluções sólidas , fase única
- Misturas mais do que uma fase
- Limite de Solubilidade:

Máxima concentração na qual uma fase única ocorre.

Questão: Qual o limite de solubilidade a 20°C?

Resposta: 65 % peso açucar. se $C_0 < 65$ % paçúcar: xarope se $C_0 > 65$ % paçúcar: xarope + açúcar

Sucrose/Water Phase Diagram

Componentes e Fases

• Componentes:

Elementos ou compostos que estão presentes em uma mistura (por ex., Al e Cu)

• Fases:

Distinção física e química de regiões de um material (por ex., $\alpha \in \beta$).

Liga Al-Cu

Efeitos da *Temperatura e da* Composição (*C*_o)

- Mudando *Temp* pode mudar # de fases: *de A* para *B*.
- Mudando C_o pode mudar # de fases: de B para D.

Equilíbrio de Fase

Sistema de solução Completa (por ex., Ni-Cu)

	Estrutura	Eletro- negatividade	<i>r</i> (nm)
Ni	FCC	1.9	0.1246
Cu	FCC	1.8	0.1278

- (Regra de W. Hume Rothery) sugere alta solubilidade mutua.
- Ni e Cu são totalmente miscíveis em todas as proporções

SOLUÇÕES SÓLIDAS EM METAIS

SOLUÇÕES SÓLIDAS SUBSTITUCIONAIS

- As soluções sólidas formam-se mais facilmente quando os átomos do solvente e do soluto têm dimensões e estruturas eletrônicas comparáveis.
- No caso do latão, o cobre e o zinco têm raios atômicos de 0,1278 e 0,1332 nm, respectivamente. Ambos têm, excetuando-se o nível de valência, 28 elétrons e apresentam, quando isolados, número de coordenação NC = 12. Portanto, o zinco substitui facilmente até um máximo de cerca de 40% dos átomos de cobre no reticulado CFC. Este é um exemplo de <u>solução sólida substitucional</u>, bastante comum em vários sistemas metálicos.

Outro exemplo é a solução de cobre e níquel formando o <u>monel</u>. Estas soluções vão desde praticamente a ausência de níquel até quase 100% de átomos de níquel. Todas as ligas cobre-níquel são CFC. Os raios atômicos do cobre e do níquel são 0,1278 e 0,1246 nm, respectivamente, e eles têm a mesma estrutura CFC.

- Por outro lado, há um limite muito bem definido na quantidade de estanho que pode substituir cobre para formar <u>bronze</u> e ainda manter a estrutura CFC do cobre. O estanho em excesso, além da quantidade correspondente à <u>solubilidade sólida</u>, forma uma outra fase. Isto é definido pelo <u>limite de solubilidade</u>.
- Conforme aumenta a diferença de dimensões entre os átomos, ocorre cada vez menos substituição. Apenas 20% dos átomos de Cu podem ser substituídos por alumínio.

- Para ocorrer a completa miscibilidade em soluções sólidas metálicas, os metais devem ser bastante similares, como definido pela <u>Regras de Hume-Rothery</u> (metalurgista inglês, 1899-1968):
 - 1) Menos que cerca de 15% de diferença nos raios atômicos
 - 2) A mesma estrutura cristalina
 - 3) Eletronegatividades similares (atração de elétrons)
 - 4) A mesma valência.

• A Tabela 4-1 e a Figura 4-3 mostram a solubilidade sólida máxima, no cobre, de vários metais com a mesma estrutura CFC do cobre.

Tabela 4-1

Solubilidade Sólida versus Raios Atômicos para Metais de Mesma Estrutura do Cobre

Soluto	Solvente	Relação de Raios	Solubilidad	Solubilidade Máxima	
			%(em pêso)	% (atômica)	
Ni	Cu	1,246/1,278 = 0,98	100	100	
Al	Cu	1,431/1,278 = 1,12	9	19	
Ag	Cu	1,444/1,278 = 1,14	8	6	
Pb	Cu	1,750/1,278 = 1,37	nil	nil	
Ca	Cu	1,965/1,278 = 1,54	?	?	
Ni	Ag	1,246/1,444 = 0,86	0,1	0,1	
Cu	Ag	1,278/1,444 = 0,88	9	11	
Al	Ag	1,431/1,444 = 0,99	6	20	
Pb	Ag	1,750/1,444 = 1,21	5	3	
Ca	Ag	1,965/1,444 = 1,36	nil	nil 💠	
Cu	Ni	1,278/1,246 = 1,02	100	100	
Al	Ni	1,431/1,246 = 1,14	12	22	
Ag	Ni	1,444/1,246 = 1,16	4	2	
Pb	Ni	1,750/1,246 = 1,40	?	?	
Ca	Ni	1,965/1,246 = 1,58	nil	nil	
Ni	Al	1,246/1,431 = 0,87	0,05	0,03	
Cu	Al	1,278/1,431 = 0,90	6	3	
Ag	Al	1,444/1,431 = 1,01	48	19	
Pb	Al	1,750/1,431 = 1,22	0,02	0,1	
Ca	Al	1,965/1,431 = 1,38	nil	nil	
	<u>,, </u>				

, ·

Fig. 4-3. Solubilidade sólida versus relação entre os raios atômicos (ligas à base de cobre com elementos que são normalmente cfc).

Diagrama de fases do sistema Cu-Sn

 $r_{Cu} = 0,1278 nm$ $r_{Sn} = 0,1509 nm$

Diagramas de Fases

- Indica as fases como função da Temperatura, C_o, e P.
 Neste curso:
 - Sistemas binários: apenas 2 componentes.
 - Variáveis independentes : *Temperatura* e C_O (*P* = 1 atm).

•Diagrama de Fases para o sistema Cu-Ni

- 2 Fases:
 - L (liquido)
 - α (solução sólida CFC)
 - 3 Campos de Fases: L $L + \alpha$ α

Diagramas de Fases : # e tipos de fases

- Regra 1: se conhecemos a *Temp* e a C_o, então conhecemos:
 -- o # e os tipos de fases presentes.
- Exemplos: 1600 .35%p) A(1100°C, 60%p): L (liquido) 1500 1 fase: α 1250°(*B*(1250°C, 35%p): 1400 iquidus 2 fases: $L + \alpha$ $(O_{\circ})L_{\circ}$ 1300 solid α 1200 (ss CFC) 1100 **•** *A* (1100°C,60%p) 1000 20 40 60 80 100 0 %peso Ni

Diagramas de Fases : composição e fases

- Regra 2: se conhecemos a *Temp* e a C_o, então conhecemos:
 -- a composição de cada fase.
- Sistema Cu-Ni • Exemplos: T_A $C_0 = 35$ %peso Ni liquidus $T_A = 1320^{\circ}C$: 1300 * Q (C) apenas Líquido (L) B solidus T_B $C_{I} = C_{O} (= 35 \text{ %peso Ni})$ + 0L α 1200 Π $T_D = 1190^{\circ}$ C: T_D apenas Sólido (α) 40 43 3032 35 50 20 $C_{\alpha} = C_{O}$ (= 35 % peso Ni) $C_L C_0$ C_{α} %peso Ni $T_{\rm R} = 1250^{\circ}{\rm C}$: ambos α and L $C_L = C_{\text{liquidus}} (= 32 \text{ %peso Ni})$ $C_{\alpha} = C_{\text{solidus}}$ (= 43 % peso Ni)

Diagramas de Fases: frações de fases

• Regra 3: se conhecemos a *Temp* e a *C*₀, então conhecemos: -- a quantidade de cada fase (%peso ou %mol).

Regra da Alavanca

 Linha de interligação – conecta as fases em equilíbrio – essencialmente numa isoterma

Quanto de cada fase?

Pense nisso como uma alavanca (gangorra)

 $M_{\alpha} \cdot S = M_L \cdot R$

 $W_{\alpha} = \frac{R}{R+S} = \frac{C_0 - C_L}{C_{\alpha} - C_L}$

Resfriamento em um sistema binários: Cu-Ni

- Sistema é:
 - -- binário
 - *i.e.*, 2 componentes: Cu e Ni.
 - --isomórfico
 - i.e., solubilidade completa de um componente no outro; o campo da fase α estende-se de 0 to 100% Ni.
 - Considerar $C_0 = 35$ %pesoNi.

Sistemas em equilíbrio

- C_{α} no resfriamento.
- Cu-Ni : Primeira fase α a solidificar possui C_{α} = 46 % peso Ni. Última fase α a solidificar possui C_{α} = 35 % peso Ni.
- Altas taxas de resfriamento: estrutura em partes
- baixas taxas de resfriamento: estrutura em equilíbrio

Propriedades Mecânicas: Sistema Cu-Ni

• Efeito da solução sólida na resistência:

-- Máximo em função de Co

-- Mínimo em função de Co

Sistemas Binários-Eutéticos

2 componentes

Possui uma composição com Temp de fusão inferior aos componentes puros

- 3 regiões com uma fase
 (L, α, β)
- solubilidade Limitada :
 - α : rico em Cu

огепа

- β : rico em Ag
- T_E: mínima Temp de fusão
- C_E: Composição em T_E
- Transição Eutética $L_{(CE)} \implies \alpha_{(C\alpha E)} + \beta_{(C\beta E)}$

Diagrama de fases do sistema Cu-Pb $r_{Cu} = 0,1278 \text{ nm}$ $r_{Pb} = 0,1750 \text{ nm}$

EX: Sistema Eutético Pb-Sn

Lorena

 Para uma liga com 40 %p Sn – 60 %p Pb a 150°C, temos... -- fases presentes: $\alpha + \beta$ $T(^{\circ}C)$ --composição das fases: $C_{\rm O}$ = 40 %peso Sn 300 $C_{\alpha} = 11$ %peso Sn L (liquid) $C_{\beta} = 99$ %peso Sn $-+\alpha$ 200 **a** 183°C .+β -- Qtde de cada fase: 18.3 61.9 97.8 $W_{\alpha} = \frac{S}{R+S} = \frac{C_{\beta} - C_{O}}{C_{\alpha} - C_{C}}$ 150 \boldsymbol{R} S 100 $\alpha + \beta$ $=\frac{99-40}{99-11}=\frac{59}{88}=67\%$ <mark>99</mark>100 11 20 40 *C*₀ 60 80 0 $W_{\beta} = \frac{R}{R+S} = \frac{C_0 - C_{\alpha}}{C_0 - C_{\alpha}}$ C_{α} C_{β} C, %peso Sn $=\frac{40-11}{99-11}=\frac{29}{88}=33\%$

EX: Sistema Eutético Pb-Sn

• Para uma liga com 40 %p Sn – 60 %p Pb a 220°C, temos...

огепа

-- fases presentes : $\alpha + L$ $T(^{\circ}C)$ -- composição das fases : $C_{\rm O}$ = 40 %peso Sn 300 $C_{\alpha} = 17$ %peso Sn L (liquido) $C_1 = 46$ %peso Sn $+\alpha$ <mark>220</mark> 200 Ω R +β S -- Qtde de cada fase : 183°C $W_{\alpha} = \frac{C_L - C_O}{C_L - C_{\alpha}} = \frac{46 - 40}{46 - 17}$ 100 $\alpha + \beta$ $=\frac{6}{29}=21\%$ 1720 *40* 46 60 100 80 0 C_{α} $C_0 C_L C$, wt% Sn $W_L = \frac{C_0 - C_\alpha}{C_1 - C} = \frac{23}{29} = 79\%$

Microestruturas em Sistemas Eutéticos:

- *C*₀ < 2 %peso Sn
- Resultados:
 - -L
 - $-L + \alpha$
 - -policristais de grãos $\ \alpha$
 - i.e., apenas uma fase sólida.

(limite de solubilidade a Temp ambiente)

Microestruturas em Sistemas Eutéticos:

- 2 %p Sn < *C*₀ < 18,3 %p Sn
- Resultados:
 - L
 - L + α
 - apenas α
 - finalmente duas fases
 - > α policristalino
 - \succ inclusões finas de fase β

Microstruturas em Sistemas Eutéticos:

- $C_0 = C_E$
- Resultados: microestrutura Eutética (estrutura lamelar)
 - -- camadas alternadas (lamelares) de cristais de α e β .

Estrutura Eutética Lamelar

Microstruturas em Sistemas Eutéticos:

- 18,3 % peso Sn < C_0 < 61,9 % peso Sn (hipoeutético)
- Resultados: cristais α e uma microestrutura eutética

Hipoeutético & Hipereutético

Compostos Intermetálicos

0 5 10 20 40 70 100 30 700 L1200 L 600 + Mg₂Pb $\alpha + L$ 1000 500 Temperature (°C) α femperature (°F) 800 400 L + + Mg₂Pb 600 300 400 200 $\alpha + Mg_2Pb$ β + 200 Mg₂Pb 100 Mg₂Pb 0 0 20 40 60 80 100 Composition (wt% Pb) (Mg) (Pb)

Composto intermetálico forma uma linha – não uma área – composição estequiométrica exata

Eutetóide & Peritético

• Eutético

$$L \stackrel{\text{cool}}{\overline{\text{heat}}} \alpha + \beta$$

• Eutetóide

• Peritético

$$S_1 + L \implies S_2$$

$$\delta + L \xrightarrow{\text{cool}} \gamma \qquad (1493^{\circ}\text{C})$$

Diagrama de Fase Ferro-Carbono (Fe-C)

Aços ligados com mais elementos

- Mudanças na *T*_{eutetóide}
- mudanças na C_{eutetóide} :

- A escória adicionada no Refino tem a função tanto de proteção térmica (evitar perda de temperatura) quanto proteção atmosférica (evitar reoxidação), mas também pode ter a função de captação de inclusões.
- Os principais insumos de escórias são: cal (CaO), a fluorita (CaF₂), a alumina (Al₂O₃), o óxido de magnésio (MgO), ou mais recentemente escórias pré-fundidas, escórias sintéticas em que, além da mistura mecânica dos componentes, é realizada também uma pré-fusão.
- A utilização única ou combinada destes compostos fica a cargo dos engenheiros de processos, que são os responsáveis por desenhar o roteiro a ser seguido. Normalmente, seguem os diagramas quaternários CaO-Al₂O₃-SiO₂-MgO, mas na prática são utilizados os ternários da combinação destes elementos.
- A composição da escória está diretamente ligada à formação de inclusões. Deseja-se evitar escórias de alto ponto de fusão, sólidas, com interação ruim com o aço, e pouca ou nenhuma captação de inclusões. Busca-se portanto escórias líquidas nas temperaturas de processamento (1550°C a 1650°C), com boa interação com o aço e que preferencialmente captem inclusões.

Composição da escória em aços

Diagrama ternário em corte isotérmico e em vista tridimensional do sistema CaO-Al₂O₃-SiO₂, evidenciando a região de menor ponto de fusão (Dave FinkeInburg. How Glazes Melt: In Search of the Elusive Eutectic. *Ceramic Starts Daily.* [Online] Dezembro 09, 2009. http://ceramicartsdaily.org/wp-content/uploads/2009/11/ternary-diagram-large.jpg).