Aula 6 – Medição de fluxo

Prof. Gerônimo

- FLUXO: O movimento de um fluído em uma tubulação, conduto ou canal, é denominado fluxo.
- Definição de fluxo: É a quantidade de matéria, volume ou massa que escoa por unidade de tempo em uma dada instalação.
- Unidades de fluxo:
- Galão por minuto gpm
- Polegadas cúbicas por minuto in³/min
- Centímetros cúbicos por segundo cm³/s
- Litros por segundo l/s
- Pé cúbico por minuto ft³/min

- Para medidores mássico:
- Massa média do fluxo (fluxo mássico) em quilograma por segundo – kg/s
- Para Medidores por pressão diferencial:
- Medem o volume médio do fluxo (fluxo volumétrico) em metro cúbico por segundo – m³/s

Para a seleção de um medidor de fluxo devem-se levar em consideração os seguintes pontos:

- Tipo de fluído a ser medido e suas características (viscosidade, limpeza, condutividade);
- Local da exibição da medida (no próprio local ou distante);
- Faixa de fluxo, pressão e temperatura do processo a ser medido;
- Tipo e tamanho da tubulação, entre outros.

Tabela

Método ou dispositivo utilizado	Sinal de entrada	Sinal de saída	
Tubo de Pitot a els ognessituaciónses	Velocidade pontual ou local do fluido ou fluxo volumétrico	Pressão diferencial	
Anemômetro (método do fio quente)	Velocidade pontual ou local do fluido	Temperatura	
Eletromagnético	Velocidade média do fluido	Tensão elétrica	
Ultrassom	Velocidade média do fluido	lo fluido Tempo ou por frequência (Doppler)	
Placa de orifício	Fluxo volumétrico	Pressão diferencial	
Tudo de Venturi	Fluxo volumétrico	Pressão diferencial	
Bocal Bocal	Fluxo volumétrico	Pressão diferencial	
Turbina 7 PA = 70	Fluxo volumétrico	Ciclos ou revoluções	
Deslocamento positivo	Fluxo volumétrico Ciclos ou revoluções		
Draga ou força de arrasto	Fluxo volumétrico	Força	
Área variável (rotâmetro)	Fluxo volumétrico	Deslocamento do elemento flutuante	
Vórtice 9 by sommeros de 8 estrovo	Fluxo volumétrico	Frequência	
Efeito Coriolis	Massa média do fluxo	Força	
Transporte térmico	Massa média do fluxo	Temperatura	

Tabela

Medidor de fluxo	Recomendado principalmente para	Perda de pressão	Precisão típica (%)	Custo relativo
Placa de orifício	Líquidos limpos	Média	de ±2 a ±4 do fundo de escala	Baixo
Tubo de Venturi	Líquidos limpos, sujos e viscosos	Baixa	±1 do fundo de escala	Médio
Bocal	Líquidos limpos e sujos	Média	de ±1 a ±2 do fundo de escala	Médio
Tubo de Pitot	Líquidos limpos	Baixa	de ±3 a±5 do fundo de escala	Baixo
Área variável	Líquidos limpos, sujos e viscosos	Média	de ±1 a ±10 do fundo de escala	Baixo
Deslocamento positivo	Líquidos limpos e viscosos	Alta denergia par	a ±0,5 aceleração é obtida da pro	Médio
Turbina	Líquidos limpos e viscosos	Alta	±0,25	Alto
Vórtice	Líquidos limpos e sujos	Média	±1 o ret	Alto
Eletromagnéticos	Líquidos condutivos limpos e sujos	Nenhuma	±0,5	Alto
Ultrassônico (efeito Doppler)	Líquidos sujos e viscosos	Nenhuma	±5 do fundo de escala	Alto
Ultrassônico (tempo)	Líquidos limpos e viscosos	Nenhuma	de ±1 a ±5 do fundo de escala	Alto
Efeito Coriolis (massa)	Líquidos limpos, sujos e viscosos	Baixa	±0,4	Alto
Massa térmica	Líquidos limpos, viscosos e sujos	Baixa	±1 do fundo de escala	Alto

- Conceitos fundamentais:
- Massa específica (ρ)
- Parâmetro utilizado para se caracterizar a matéria ρ = f (P, T)
 ex: da água ρ = 1000 kg/m³ ou 1 g/cm³.

Densidade (d)

Relação entre massa volumétrica da matéria em estudo (análise) e a massa volumétrica da matéria de referência – normalmente a água.

Viscosidade (μ) ou (η)

Propriedade dos fluídos cuja origem são as forças dissipativas existentes entre as moléculas. Substância com elevado atrito interno são altamente viscosas. A viscosidade dos líquidos é maior que do gases. Depende da temperatura do fluído.

Para o líquido $\uparrow T$, $\downarrow \mu$. Para os gases $\uparrow T$, $\uparrow \mu$ Unidade: SI – poiseuille (PI), 1PI – 1Pa.s O centipoise (cp) equivale a 10^{-2} PI.

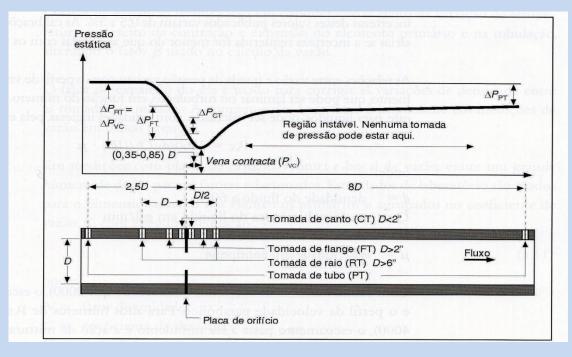
Condutividade

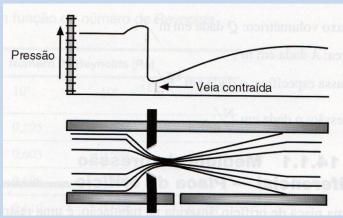
Todo meio condutor pode ser caracterizado por sua condutividade elétrica, que depende da condutividade elétrica de cada íon que constitui o fluído.

Fluído incompressível

Quando a variação da pressão e massa específica são insignificantes. As propriedades do fluído não variam com o tempo. Normalmente os líquidos são considerados incompressíveis e os gases e vapores compressíveis.

Tipo de escoamento


Laminar ou turbulento


Número de Reynolds

$$Re = \frac{\rho VD}{\mu}$$

Medidores de fluxo por pressão diferencial

- A determinação de vazão de um fluído através de leitura da queda de pressão em uma restrição constitui a técnica mais comum encontrada na indústria. A queda de pressão provocada por uma grande variedade de formas geométricas de restrições tem sido caracterizada através de anos.
- Vários tipos de restrições possuem aplicações, vantagens e desvantagens específicas. Bernoulli estabeleceu que, quando um fluído passa por uma restrição, ele acelera e a energia para esta aceleração é obtida da pressão estática do fluído. Consequentemente, a pressão da linha cai até um ponto de constrição, ver figura e parte da pressão é recuperada quando o fluxo volta para a tubulação sem restrição.

Medidores de fluxo por pressão diferencial

- Baseada na <u>obstrução</u> da passagens de um determinado fluído.
- O fluxo é calculado pela medição da queda de pressão causada pela obstrução inserida no caminho do fluxo.
- A obstrução quando apropriadamente dimensionada em uma tubulação cria um diferencial de pressão entre a montante e a jusante.
- Este diferencial é proporcional ao quadrado da vazão.
 Uma vez medido este diferencial, pode-se indicar, totalizar, programar e controlar a vazão, seja através de instrumentos convencionais analógicos ou sofisticados sistemas digitais.

EQUAÇÃO GERAL

Em função da Pressão:

VAZÃO VOLUMÉTRICA $Q = K (\Delta P)^{0.5}$

VAZÃO MÁSSICA $W = K (\Delta P)^{0.5}$

Sendo:

Q = vazão em volume

W = vazão em massa

K = constante da medição

 ΔP = pressão diferencial

EM FUNÇÃO DA GEOMETRIA.

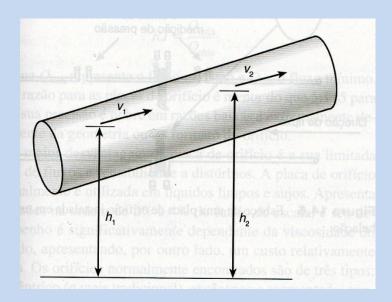
Aplicamos a equação de Bernoulli.

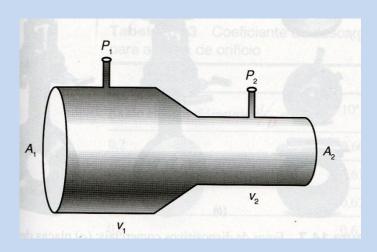
$$\frac{V_1^2}{2g} + \frac{P_1}{\gamma} + h_1 = \frac{V_2^2}{2g} + \frac{P_2}{\gamma} + h_2$$

Considerando $h_1 = h_2$

$$\frac{V_1^2}{2g} + \frac{P_1}{\rho g} = \frac{V_2^2}{2g} + \frac{P_2}{\rho g}$$

Trabalhando a equação, temos:

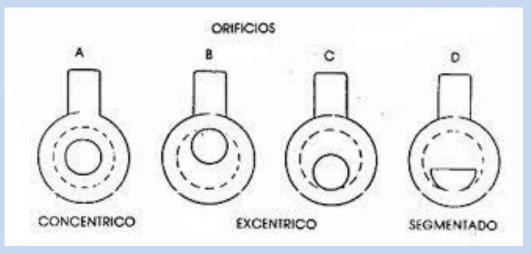

$$P_1 - P_2 = \rho \frac{V_2^2 - V_1^2}{2} \quad (1)$$


Do principio da conservação da massa, equação da continudade, tem-se:

$$V_1.A_1\rho = V_2.A_2\rho$$
 (2)

Substituindo (2) em (1), temos:

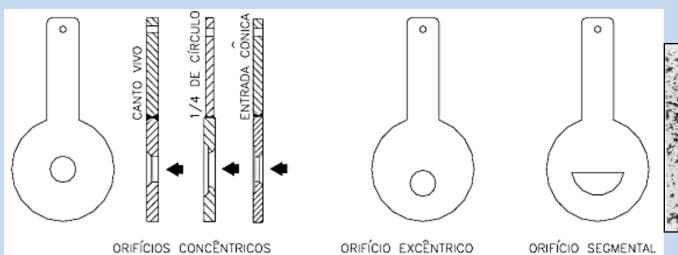
$$Q = V_1 A_1 = \frac{A_2}{\sqrt{1 - \left(\frac{A_2}{A_1}\right)^2}} \sqrt{\frac{2(P_1 - P_2)}{\rho}}$$

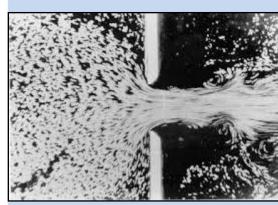

Para situações reais vamos adicionar o coeficiente de descarga $\mathbf{C_d}$. Que pode ser determinado experimentalmente.

$$Q = C_d \frac{A_2}{\sqrt{1 - \left(\frac{A_2}{A_1}\right)^2}} \sqrt{\frac{2(P_1 - P_2)}{\rho}}$$

A constante $\mathbf{C_d}$ é função da dimensão ou abertura do orifício cuja relação da área é dada por $A_{vc}/A_{1.}$

Placas de orifícios


- Normalmente são utilizadas para trabalho com líquido limpos, gás ou vapor.
- Disponíveis para qualquer diâmetro de tubulação.
- As placas podem ser do tipo concêntricas, excêntricas ou segmentais e podem ter diâmetros nominais de 1" a 40". As Placas de orifício são simples, robustas, e confiáveis.
- São baseadas em normas internacionais (ISO-5167 / AGA Rep. 3 / ISA RP 3.2).



Tipos e aplicação:

- Concêntricas : para fluídos limpos
- Excêntricas e Segmentais : para fluídos sujos com partículas sólidas em suspensão .
- Canto arredondado: para fluídos de alta viscosidade.

- ORIFÍCIOS DE CANTO VIVO: Apresenta na face de entrada uma aresta viva seguida de parte cilíndrica e um chanfro. A face de entrada deve ser bem acabada e plana e o canto vivo não pode apresentar rebarbas, pancadas ou outras irregularidades. Este estilo opera com fluído de baixa viscosidade e sem partículas em suspensão, que poderiam acumular na face de entrada. É o tipo mais comum, sendo usado para ar, gases em geral, líquidos e vapor.
- ORIFÍCIOS 1/4 DE CÍRCULO: Apresenta na entrada do orifício, um raio na forma de um quadrante; são adequados para líquidos de viscosidade média para alta e somente devem ser usados quando os limites do número de Reynolds tenham sido ultrapassados pelos orifícios de canto vivo; a execução do raio com alta precisão é difícil, requerendo equipamentos e técnicas especiais na inspeção.
- ORIFÍCIOS DE ENTRADA CÔNICA: A entrada do orifício possui um cone e, posteriormente, uma parte cilíndrica; são adequados para líquidos de viscosidade elevada, com baixos valores do número de Reynolds.
- PLACAS DE ORIFÍCIO EXCÊNTRICO OU SEGMENTAL
- Operam com fluídos particulados e tanto o orifício excêntrico como o segmental devem ser posicionados na base do tubo. Apresentam os mesmos requisitos de acabamento e planicidade dos orifícios concêntricos. O estilo de construção permite que as partículas, que fluem pela base do tubo, escoem pelos orifícios, sem que haja acúmulo delas na face de entrada da placa.

MATERIAL DAS PLACAS

 Para aplicações comuns usamos o inox 316 (ou 304), nas normas AISI ou ASTM; aplicações severas de corrosão ou compatibilidade com o fluído podem exigir materiais mais nobres como o Titânio, Monel, Tântalo, Hastelloy, Níquel ou Teflon. Para exigências de abrasão poderemos usar materiais de dureza elevada. Aplicações em vapor com temperaturas superiores a 400°C exigem o uso do AISI 310.

PRECISÃO DA MEDIÇÃO

- É dependente da relação β, de variações na pressão, temperatura, densidade, composição do fluído, centragem da placa e das juntas; sofre interferência da precisão na execução do furo da placa, da qualidade e precisão do instrumental e da existência de trechos retos mínimos.
- A precisão global da medição está entre 0.5 e 1% e pode ser aumentada com a utilização de sistemas informatizados de computação da vazão.
- O aumento na precisão pode ser obtido pela execução do meter run (conjunto de medição), montado em bancada, composto por trechos de tubos, flanges, placa, estojos e porcas; este sistema elimina os problemas causados pela montagem no campo, principal fonte de erros na medição.

• Exercícios:

- O que ocorre com o fluxo em uma tubulação quando inserimos uma restrição?
- Descreva o princípio de funcionamento de medidores de vazão por pressão diferencial tipo placas de orifícios.
- 3) Descreva as principais características, vantagens e desvantagens dos medidores por fluxo diferencial.
- 4) O que ocorre com o fluxo no uso das placas de orifício dos tipos concêntrica, excêntrica e segmentada?

