Materiais para Indústria Química

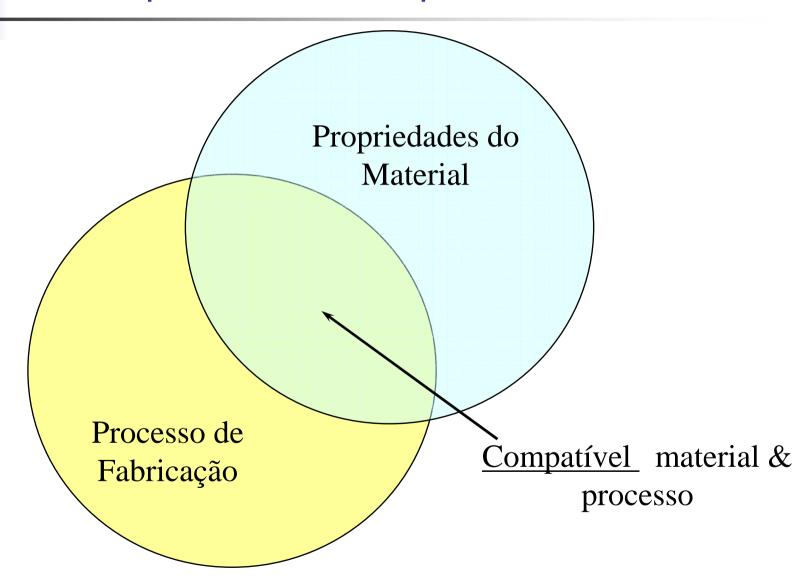
Aula 1

Seleção e Processos de Fabricação

Seleção de Materiais

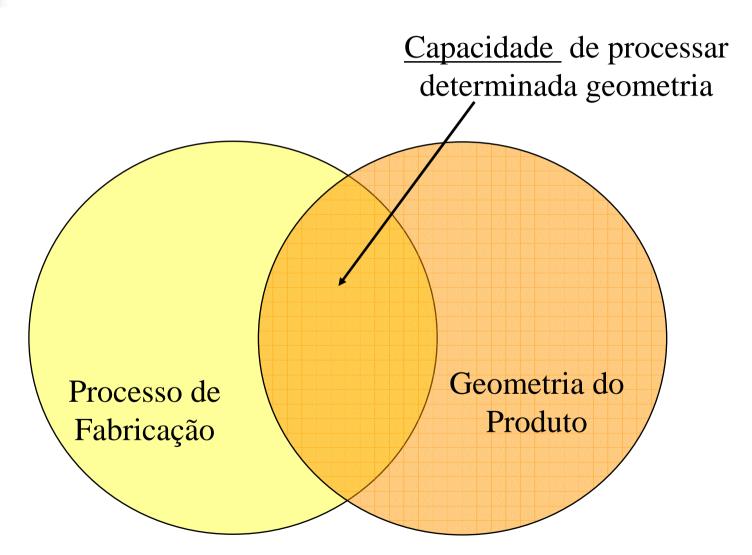
- Interdependência na Definição do Produto
- Propriedades Mecânicas
- Propriedades Físicas
- Família de materiais
- Primeira seleção desses materiais

Seleção de Materiais

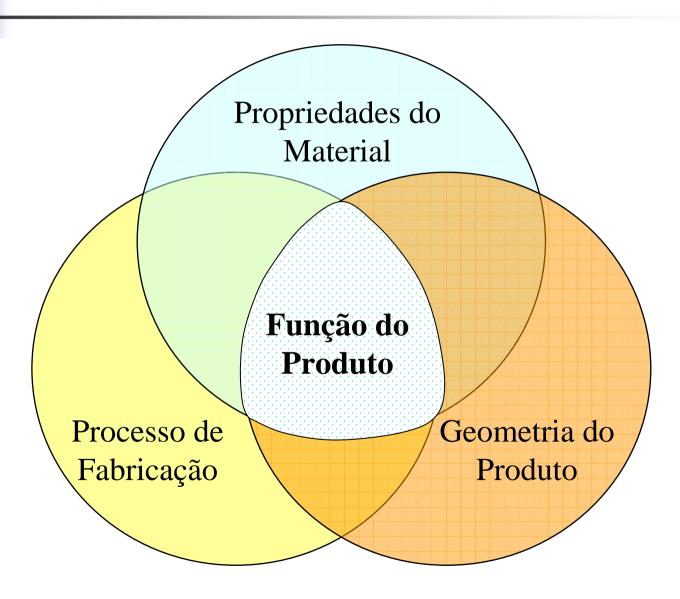

Condições especificas

- Condições dimensionais;

- Considerações de forma;
 Considerações de peso;
 Considerações de resistência mecânica;
- Resistência ao desgaste;
- Conhecimento das variáveis de operação;
- Facilidade de fabricação;
- Requisitos de durabilidade;
- Número de unidades;
- Disponibilidade de material;
- Custo;
- Existência de especificações e códigos;
- Viabilidade de réciclagem;
- Valor da sucata;
- Grau de normalização;
- Tipo de carregamento.



Interdependência - compatibilidade

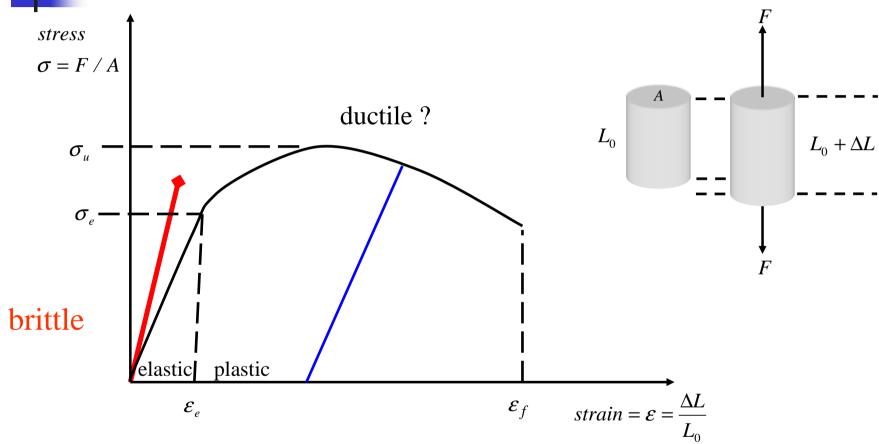


Interdependência - capacidade

Função do Produto é interdependente

Propriedades do Material

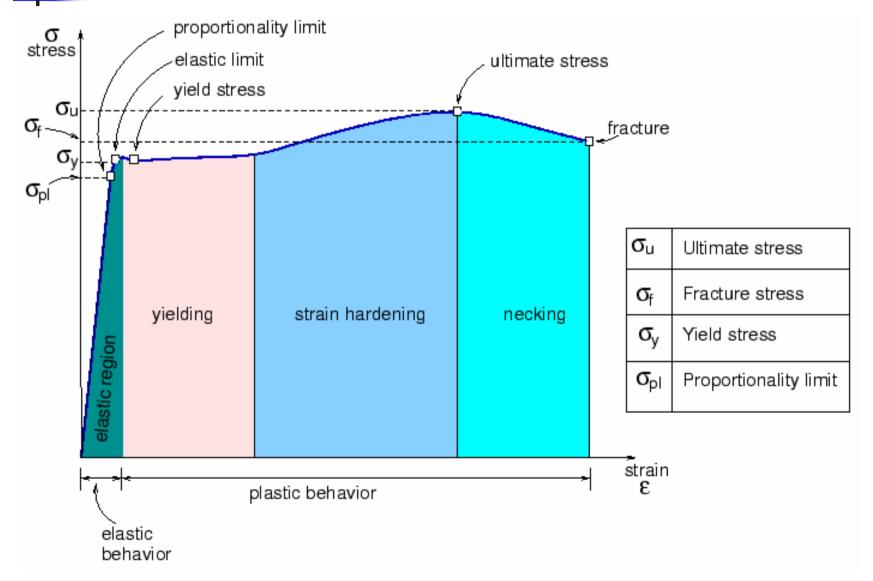
Propriedades Mecânicas


Quantidade que caracteriza o comportamento de um material em resposta a uma solicitação externa, ou força aplicada

Propriedades Físicas

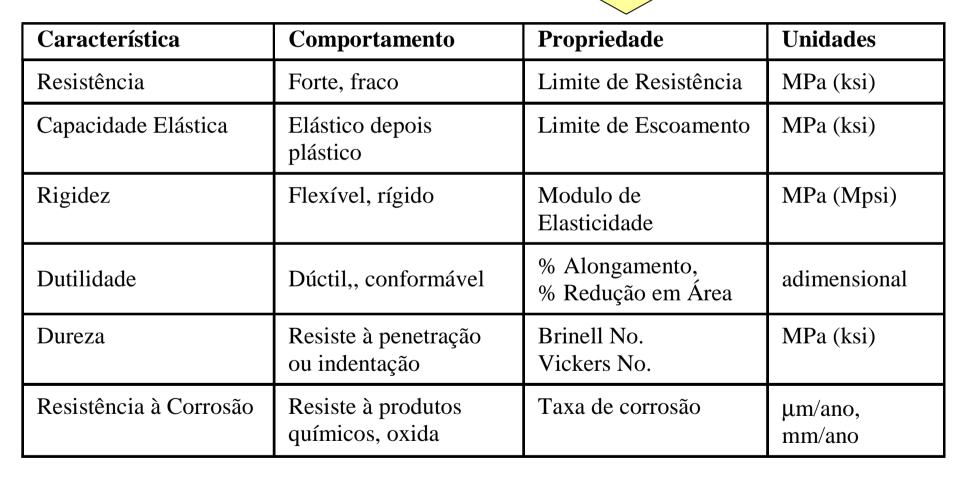
Quantidade que caracteriza o comportamento de um material em resposta a um fenômeno físico que não inclui solicitação mecânica.. (tais como: calor, eletricidade, radiação, etc)

Mechanical properties



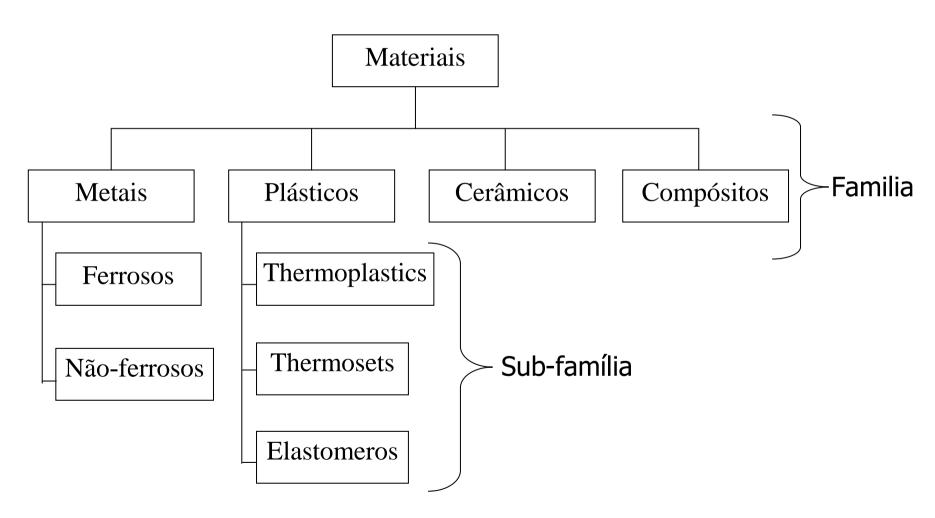
stiffness?
$$E = \frac{\sigma}{\varepsilon}$$

Strength = stress at failure = σ (failure)



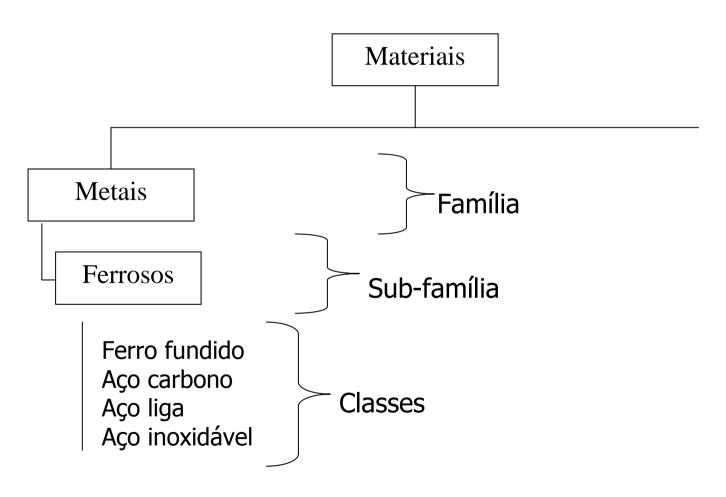
Mechanical properties

Propriedades Fundamentais



Propriedades Fundamentais

Característica	Comportamento	Propriedade	Unidades
Resistência à fadiga	Resiste a muitos ciclos de carga	Limite de fadiga	MPa (Mpsi)
Condutividade (térmica, elétrica)	condutor, isolantes	Condutividade Térmica, Condutividade elétrica	(Btu/hr) / (F-ft), Mhos
Resistência à fluência	Deformação dependente do tempo	Taxa mínima de fluência, Resistência à fluência	MPa (ksi)
Resistência ao impacto	Choque mecânico, carga de impacto	energia absorvida Charpy	N-m, (ft-lbs)
Densidade (massa) Densidade (peso)	pesado, leve	Massa específica Peso específico	kg/m ³ , (slugs/ft ³) N/m ³ , (lbs/ft ³)
Tolerância com Temperatura	Amolece, funde facilmente	Ponto de fusão	°C, °F, K



Família de Materiais / sub-famílias

Material sub-famílias/classes

Metais

Metais

Ferrosos

Ferro fundido Aço carbono Aço liga Aço inoxidável

Não-ferrosos

alumínio

latão

bronze

cobre

chumbo

magnésio

níquel

estanho

titânio

tungstênio

zinco

Polímeros

Natural and synthetic rubbers

Polymers

Thermoplastics

ABS
acetal
acrylic
nylon
polycarbonate
polyethylene
polypropylene
polystyrene
vinyl

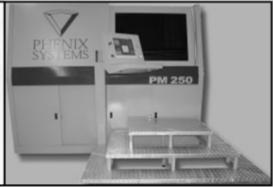
Thermosets

alkyd epoxy melamine phenolic polyester

Elastomers

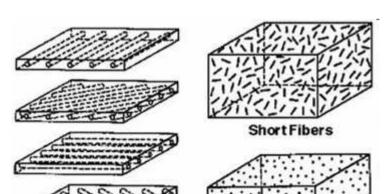
butyl
fluorocarbon
neoprene
nitrile
polysulfide
rubber
silicone


Cerâmicas



Ceramics

alumina
beryllia
diamond
magnesia
silicon carbide
silicon nitride
zirconia


Source: Phenix Systems

Composites

carbon fiber ceramic matrix glass fiber Kevlar metal matrix

Particles

Continuous Fibers

Compósitos

College Park Foot

Pie protésico dinámico 2004

Composites

Date of birth: April 21, 1978 Hometown: Thatcher, Utah Current Home:San Diego, CA Marlon Shirley

Ossur Cheeta Flex-Foot

Date of birth: Sep 15, 1986

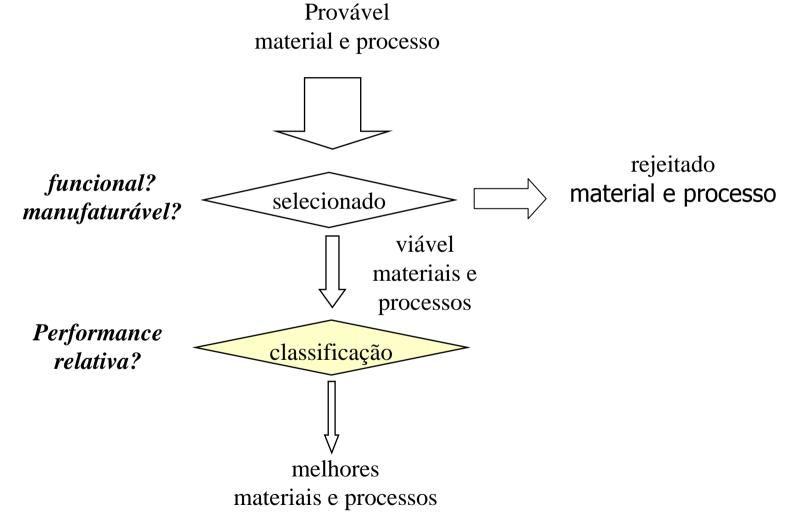
Cameron Clapp

Otto Bock C-Leg

Perfil das Propriedades por Família

Characteristics	M etals	Ceramics	Polymers
strength	strong	strong -C weak - T	weak
elastic strength	very	som e	som e
stiffness	very	very	flexible
ductility	ductile	brittle	
hardness	m ediu m	hard	soft
corrosion resistance	poor	good	excellent
fatigue resistance	good		
conductivity (heat/electric)	conductor	insulator	insulator
creep resistance	good		poor
im pact resistance	good	poor	good
density	heavy	medium	light
tem perature tolerance	good	super	poor

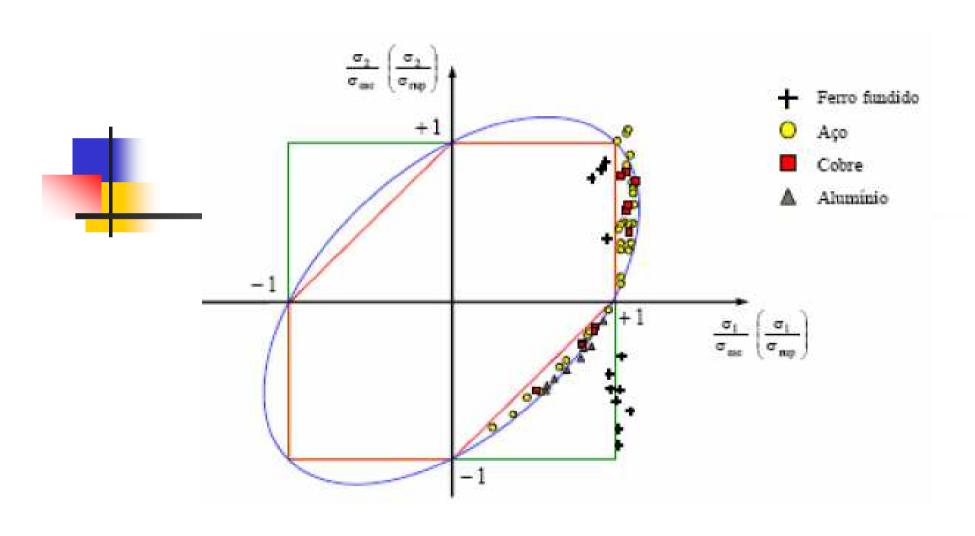
Seleção: Primeira análise dos Materiais

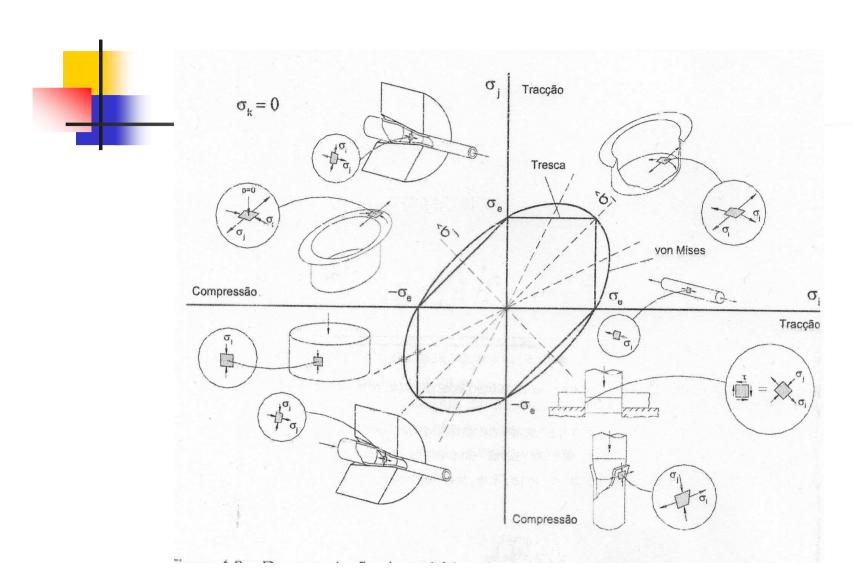

Informações quanto a Aplicação


```
    Cargas Aplicadas
        magnitude
        Natureza cíclica (constante, fadiga)
        Taxa (lenta, impacto)
        duração (fluência)
    Condições do ambiente
        temperatura
        mistura
        Exposto ao sol
        Ambiente líquido/vapor
```

- 3. Segurança
- 4. Custo

Seleção de Materiais




Importância do Conceito de Critérios de Escoamento

Exemplos

- Materiais Dúcteis
 - Teoria da Tensão de Cisalhamento Máxima ou Critério do Escoamento de Tresca
 - Teoria da Energia de Distorção Máxima, Critério de Von Mises
- Materiais Frágeis
 - Teoria da tensão normal máxima W. Rankine -1800

Comparação e validação dos três critérios

Representação dos critérios de Tresca e von Mises acrescentando ainda diversos processos de conformação mecânica

Tradicionais Processos de Fabricação

- Conformação Primária: fundição, extrusão por fusão, metalurgia do pó.
- ⇒ Sem forma inicial e forma final bem definida.
- Usinagem: serra, torno fresa, etc.
- ⇒ A forma é obtida por remoção de material.
- Junção ou união:

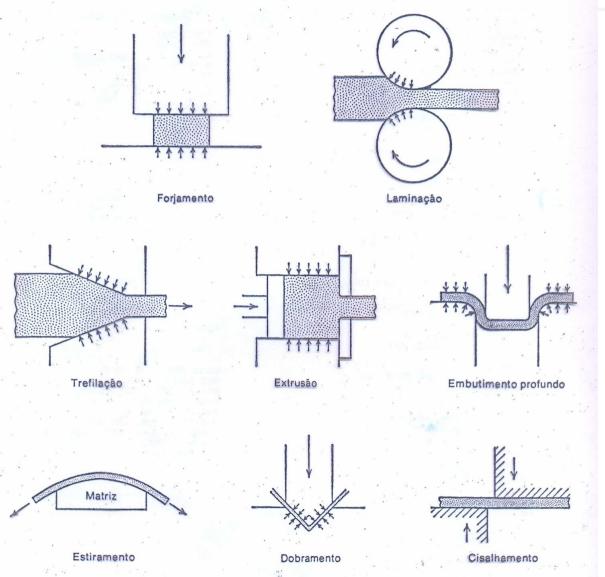
Metalúrgica: solda, brasagem

Mecânica: rebites, acoplamento, etc.

- Tratamento do metal: Tratamento térmico; Tratamento superficial.
- ⇒ sem mudança de forma, mas mudança nas propriedades e na aparência.
- Conformação Mecânica: Laminação, trefilação, forjamento, extrusão, etc.
- ⇒ O material é formado por deformação plástica.

Vantagens da Conformação Mecânica como um processo de fabricação

- Pouca ou nenhuma geração de sucata
- Obtenção da forma final em curto espaço de tempo
- Melhores propriedades mecânicas e metalúrgicas (resistência, tenacidade, tamanho de grão, etc.)



Tensões na Conformação Mecânica

- Tensões aplicadas para deformar plasticamente o material são geralmente compressivas.
- ⇒ Laminação, Forjamento, Trefilação, Extrusão.
- Além disso, em alguns processos de conformação, outros tipos de solicitações podem estar predominando:
- ⇒ Estiramento (tração)
- ⇒ Dobramento (tração e compressão)
- ⇒ Corte (cisalhamento)

Operações Típicas de Conformação

Definições

Processos de deformação plástica: operações que induzem mudança de forma numa peça por meio de forças aplicadas em várias ferramentas e matrizes.

Processos de deformação localizada

Esses processos envolvem larga quantia de deformação plástica. A razão seção transversal área/volume é pequena Para a maioria das operações, a condições a quente ou a morno são preferidas apesar de que algumas operações serem executadas à temperatura ambiente.

Ex. Laminação, extrusão, trefilação, forjamento

Processos de conformação de chapas

Em operações de conformação de chapas o material está sujeito somente a mudança de forma, ou seja, o processo envolve deformação generalizada. A razão seção transversal área/volume é muito alta. São operações realizadas à frio.

Ex. Estampagem.

Processo com deformação localizada

Laminação: Processo de compressão indireta na qual a espessura de uma chapa é reduzida pela ação de espremer a peça entre rolos cilíndricos rotativos.

Forjamento: conformação por esforços compressivos tendendo a fazer o material assumir o contorno da ferramenta conformadora, chamada matriz ou estampo.

Extrusão: conformação por compressão indireta em o material trabalhado é forçado através de um matriz contendo a sua forma de seção final.

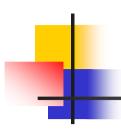
Trefilação: conformação por compressão indireta em que o diâmetro do fio ou da barra é reduzido puxando-se a peça através de uma ferramenta (Fieira ou trefila).

Propriedades do Material na Conformação

- Propriedades desejáveis do material:
 - Baixa tensão de escoamento e alta ductilidade.
- Essas propriedades são afetadas pela temperatura:
 - Ductilidade aumenta e a tensão de escoamento diminui com o aumento da temperatura.
- Outros fatores a considerar:
 - Taxa de deformação e atrito.

Deformação Plástica

- Após o limite elástico a deformação torna-se permanente ou seja passa-se para a fase plástica;
- Significado prático da deformação plástica:
 - 1) Conformação mecânica (fabricação);
 - 2) Comportamento em serviço.
- Processo de deformação plástica:
 - 1) Deformação por escorregamento;
 - 2) Deformação via movimento de discordâncias;
 - 3) Deformação por maclação.

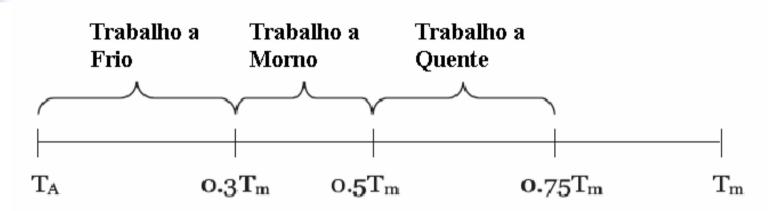

Deformação plástica

- Os materiais podem ser solicitados por tensões de compressão, tração ou de cisalhamento.
- Como a maioria dos metais são menos resistentes ao cisalhamento que à tração e compressão e como estes últimos podem ser decompostos em componentes de cisalhamento, pode-se dizer que os metais se deformam pelo cisalhamento plástico ou pelo escorregamento de um plano cristalino em relação ao outro.
- O escorregamento de planos atômicos envolve o movimento de discordâncias.



Deformação plástica e discordâncias

- Em uma escala microscópica a deformação plástica é o resultado do movimento dos átomos devido à tensão aplicada. Durante este processo ligações são quebradas e outras refeitas;
- Nos sólidos cristalinos a deformação plástica geralmente envolve o escorregamento de planos atômicos, o movimento de discordâncias e a formação de maclas;
- Então, a formação e movimento das discordâncias têm papel fundamental para o aumento da resistência mecânica em muitos materiais. A resistência mecânica pode ser aumentada restringindo-se o movimento das discordâncias.


Metais deformados plasticamente

A habilidade de um material se deformar plasticamente está relacionado com a habilidade das discordâncias se movimentarem

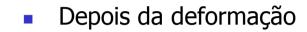
Trabalho a Quente e a Frio

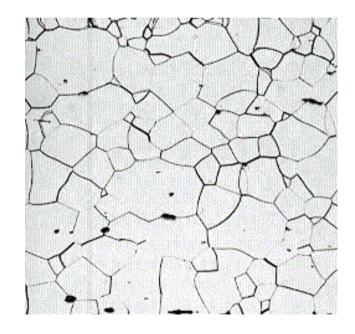
Classificação das faixas de Temperatura de operação em Conformação mecânica

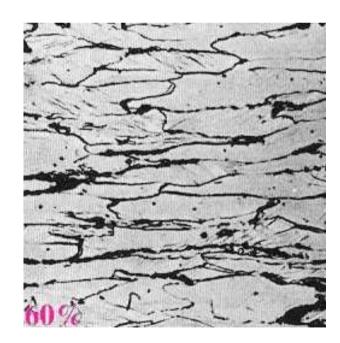
T_m é a temperatura de fusão do metal.

Trabalho a Frio

- Ocorre abaixo da temperatura de recristalização (próximo da temperatura ambiente);
- Ocorre o fenômeno do ENCRUAMENTO, ("strain hardening")
- Os grãos alongam-se na direção do esforço mecânico aplicado (menos intensamente na laminação a frio e mais intensamente quando severamente estirado – trefilação).

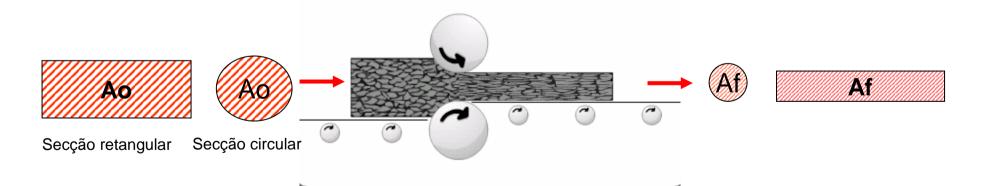

Efeitos do encruamento nas características mecânicas de metais

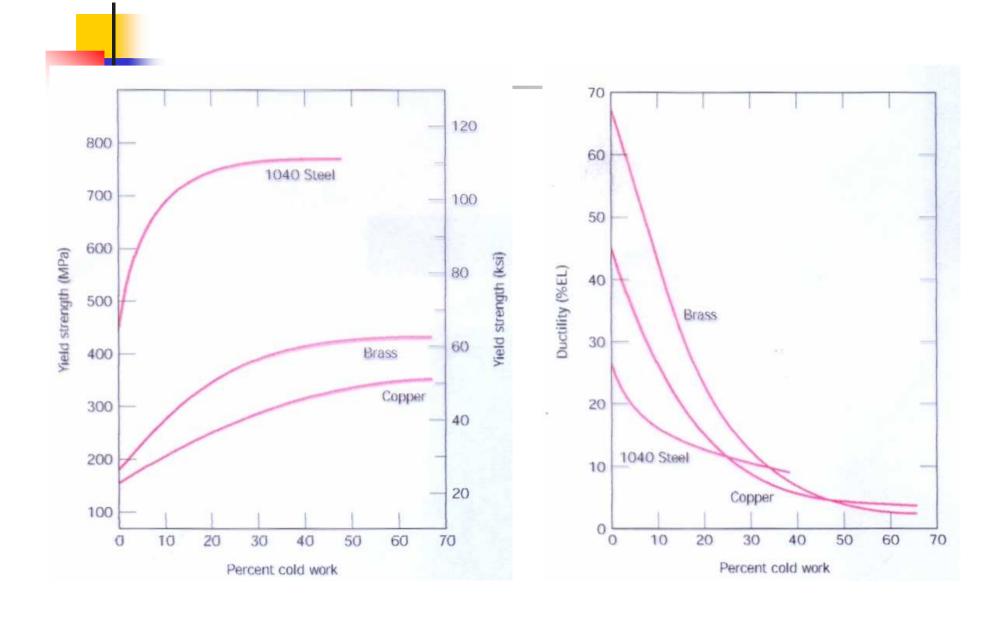

Liga	Estado	Resist. a tração	Alongamento	Dureza
		Kgf/mm ²	%	Brinell
Aço doce (1010)	normal	33,6	38%	120
Aço doce (1010)	Trabalhado a frio	91,0	2%	265
Aço inoxidável	normal	77,0	60%	165
Aço inoxidável	Laminado a a frio	129,0	9%	380



Encruamento e microestrutura

Antes da deformação


Trabalho a Frio


- Expressa-se o grau de deformação plástica com um percentual de trabalho a frio;
- O percentual de trabalho a frio (%TF) é definido como:

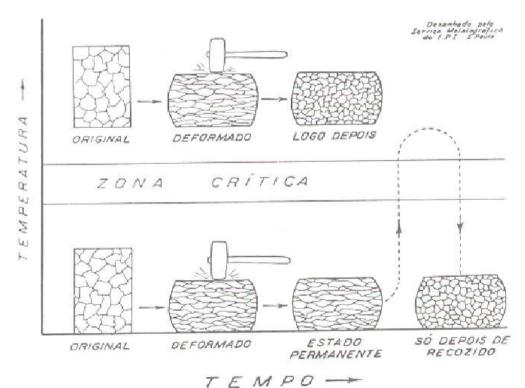
$$\%TF = \left[\frac{A_0 - A_F}{A_0}\right] x 100$$

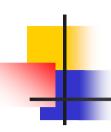
Em que, A_0 : área original da seção reta;

A_F: área final, após deformação;

Trabalho a Frio

Vantagens:


- Melhor controle dimensional;
- Melhor acabamento superficial;
- Aumento da resistência mecânica e dureza do material;

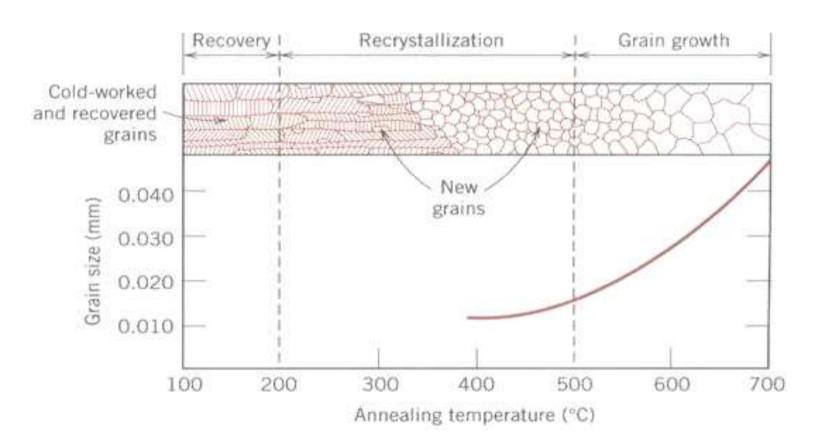

Desvantagens:

- Maior energia para deformar;
- Menor deformação;
- O material após a conformação apresenta elevado estado de tensões (<ductilidade);
- Exige ferramental que suportem maiores tensões.

- Costuma-se distinguir o "trabalho mecânico a frio" do "trabalho mecânico a quente" por uma temperatura indicada como "temperatura de recristalização".
- Temperatura de recristalização A menor temperatura na qual uma estrutura deformada de um metal trabalhado a frio é restaurada ou substituída por uma estrutura nova, livre de tensões, após a permanência nessa temperatura por um tempo determinado".

Encruamento x Recozimento

- As propriedades e a estrutura do metal alteradas pelo trabalho a frio podem ser recuperadas ou devolvidas ao estado anterior ao encruamento mediante um tratamento térmico de recristalização ou "recozimento".
- Com isso a elevada energia interna do encruamento tende a desaparecer e o metal tende a voltar a condição de energia livre, resultando num amolecimento (queda de dureza) e isenção paulatina das tensões internas.


Processo de Recozimento

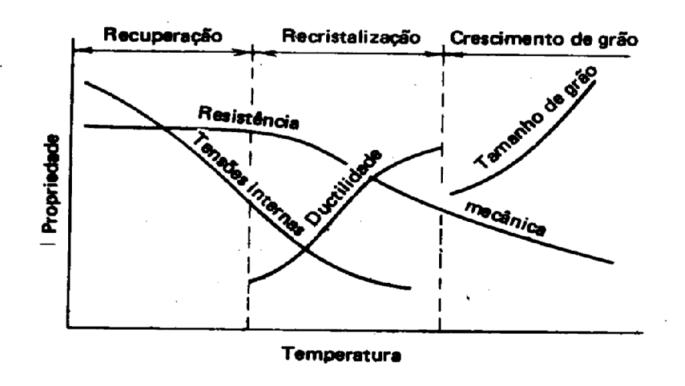
- Três etapas:
- 1. Recuperação
- 2. Recristalização
- 3. Aumento do tamanho de grão

Etapas de Recozimento

liga Cu-Zn

Recuperação

- Há um alívio das tensões internas armazenadas durante a deformação devido ao movimento das discordâncias resultante da difusão atômica;
- Nesta etapa há uma redução do número de discordâncias e um rearranjo das mesmas;
- Propriedades físicas como condutividade térmica e elétrica voltam ao seu estado original (correspondente ao material não-deformado).



Recristalização

- Depois da recuperação, os grão ainda estão tensionados;
- O número de discordâncias reduz mais ainda;
- As propriedades mecânicas voltam ao seu estado original.

Propriedades x Temperatura de recozimento

Modificação das propriedades mecânicas e do tamanho de grão pela recuperação, recristalização e crescimento de grão

Aumento da resistência pela diminuição do tamanho de grão

 O contorno de grão funciona como um barreira para a continuação do movimento das discordâncias devido as diferentes orientações presentes e também devido às inúmeras descontinuidades presentes no contorno de grão.

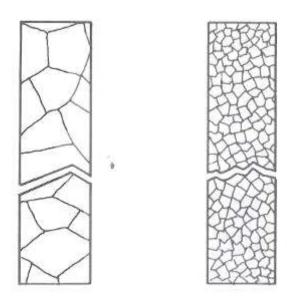
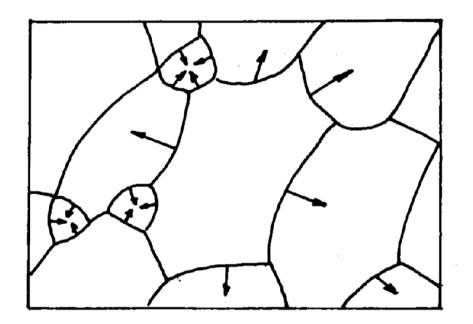


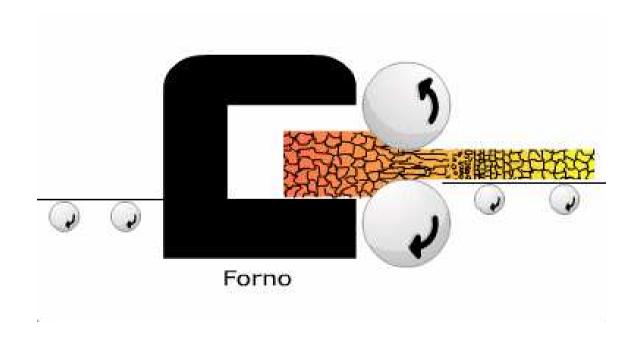
Figura Efeito do tamanho de grão na ruptura de metal.

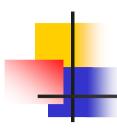

Crescimento de Grão

- A temperatura continuando a aumentar, os grãos cristalinos, agora inteiramente livres de tensões, tendem a crescer. Este crescimento de grão é também favorecido pela permanência a temperaturas acima da de recristalização. Com isso os grãos menores são engolidos pelos maiores.
- Desse modo, a única maneira de diminuir ou refinar o tamanho de grão consiste em deformar plasticamente os grãos existentes e iniciar a formação de novos grãos.

Crescimento de Grão

Formação de novos grãos


Crescimento de grão


- A granulação grosseira torna o material quebradiço, porque a coesão entre os grãos é afetada pela concentração de impurezas nos seus contornos e com o aumento da granulação dessa concentração;
- As fissuras também se propagam mais facilmente no interior dos grãos graúdos.
- Por isso, entre os aços de igual composição, os grãos mais finos possuem melhores propriedades mecânicas.

Os fenômenos de aumento de dureza causado pela deformação e o amolecimento, devido ao recozimento, ocorrem simultaneamente

à temperatura acima da recristalização.

Trabalho a Quente

Características:

- É a primeira etapa do processo metalúrgico de conformação mecânica;
- A energia para deformar é menor;
- O metal adquiri maior capacidade de deformar-se sem fissuração;
- Algumas heterogeneidades das peças (ou lingotes) como porosidades, bolhas, etc., são praticamente eliminadas pelo trabalho a quente;
- A estrutura granular, grosseira de peças fundidas, é rompida e transformada em grãos menores;
- Alguns metais dificilmente são deformados a frio sem fissurar; exemplos: tungstênio, molibdênio e outros;
- Ocorre o recozimento: crescimento grãos.

Trabalho a Quente

Vantagens:

- Permite emprego de menor esforço mecânico para a mesma deformação (máquinas de menor capacidade comparado com o trabalho a frio);
- Promove o refinamento da estrutura do material, melhorando a tenacidade;
- Elimina porosidades;
- Deforma profundamente devido a recristalização.

Desvantagens:

- Exige ferramental resistente ao calor (>custo);
- O material sofre maior oxidação, formando casca de óxidos;
- Não permite a obtenção de dimensões dentro de tolerâncias estreitas.

Trabalho a Frio e a Quente

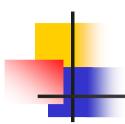
Comparativo:

Trabalho a quente

- grandes deformações;
- recozimento;
- baixa qualidade dimensional e superficial;
- normalmente empregado para "desbaste";
- peças grandes e de formas complexas;
- •contração térmica, crescimento de grãos, oxidação.

Trabalho a frio

- pequenas deformações (relativamente);
- encruamento;
- elevada qualidade dimensional e superficial;
- normalmente empregado para "acabamento"
- recuperação elástica;
- equipamentos e ferramentas mais rígidos


Recursos para a Melhoria das Propriedades Mecânicas dos Metais

- Composição Química.
- Processos de Fabricação, Acabamento e Conformação do Material.
- Tratamentos térmicos.

Tratamentos Térmicos

Exemplo	Finalidade	Procedimento	
Metais trabalhados à frio	Remover encruamento	Aquecer acima da temperatura de recristalização	
Vidro	Aliviar tensões residuais	Aquecer acima do ponto de recozimento, para que os átomos possam se ajustar às tensões	
Aço	Endurecer	Resfriar bruscamente do campo austenítico para o martensítico (é seguido pelo revenido)	
Vidro	Aumentar a resistência	Aquecer acima do ponto de deformação. Temperar em óleo, a fim da superfície ficar sob compressão	
Aço inoxidável	Produzir uma liga monofásica	Aquecer acima da curva de solubilidade; resfriar rapidamente até temperatura ambiente	
	Metais trabalhados à frio Vidro Vidro Vidro	Metais trabalhados à frio Vidro Aliviar tensões residuais Aço Endurecer Vidro Aumentar a resistência Aço inoxidável Produzir uma liga	

Recursos para a Melhoria das Propriedades Mecânicas dos Metais

Bibliografia Básica

- DIETER, G.E. Metalurgia Mecânica. Rio de Janeiro: Guanabara Dois, 1981.
- HELMAN, H. e CETLIN, P. R., Fundamentos da Conformação Mecânica dos Metais, Ed. Artliber, 2005.
- RODRIGUES, J. **Tecnologia Mecânica**. Volumes 1 e 2, Ed. Escolar, 2005.
- BRESCIANI FILHO, E. Conformação Plástica dos Metais. Volumes 1 e 2. Campinas: UNICAMP.
- ROWE,G.W. **Elements of Metalworking Theory**. Edward Arnold Publishers, 1979
- HONEYCOMBE, R.W.K. The Plastic Deformation of Metals. Edward Arnold Publishers, 1968.

Bibliografia Complementar

- CALLISTER, W. D. Ciência e Engenharia dos Materiais: Uma Introdução. Rio de Janeiro: LTC, 1999.
- M P Groover. Fundamentals of Modern Manufacturing 4/e John Wiley & Sons, Inc., 2010.
- Horiochi, L.N. Materiais Metálicos. Curso SENAI CIMATEL aula 3, 2010.

Internet:

http://xa.yimg.com/kq/groups/24030724/1730564209/name/Aula+03_MM_Deforma%C3 %A7%C3%A3os.ppt

www.cimm.com.br

http://me.emu.edu.tr/majid/4.ppt