Estatística

8 - Teste de Aderência

Teste de Aderência

IDÉIA:

descobrir qual é a Distribuição de uma Variável Aleatória X, a partir de uma amostra: {X₁, X₂, ..., X_n}

Problema:

Seja X: nº que sai na jogada de um dado

A partir da amostra abaixo, existe evidência estatística para afirmar que o dado é honesto, ou seja, que X tem Distribuição Equiprovável ???

i	1	2	3	4	5	6	Total
$f_i = O_i$	185	239	206	188	174	208	1200

Método de solução de Problemas: Teste de hipóteses

H₀: Hipótese a ser testada – Hipótese Básica

H₁: Hipótese Alternativa (negação de H₀)

Resultados de Teste de Hipóteses acerca de Parâmetros e suas probabilidades (α e β) condicionadas à realidade:

		REALI	IDADE
		H ₀ Verdadeira	H ₀ Falsa
D E C I	Aceitar H ₀	Decisão Correta (1-α)	Erro Tipo II (β)
S Ã O	Rejeitar H ₀	Erro Tipo I (α)	Decisão Correta (1-β)

α: Probabilidade cometer Erro Tipo I
 Rejeitar H₀, sendo H₀ Verdadeira
 Risco do Vendedor (Produtor)

β: Probabilidade cometer Erro Tipo II
 Aceitar H₀, sendo H₀ Falsa
 Risco do Comprador (Consumidor)

Método de Solução do Problema

TESTE DE HIPÓTESES:

H₀: X tem Distribuição Equiprovável

H₁: Tal não ocorre

Critério: Rejeitar H₀ se ...???...

Considerando:

X equiprovável então $p_i = Pr(X = i) = \frac{1}{6}$ Logo, espera-se que em 1200 jogadas saia 200 vezes cada número: $E_i = n \cdot p_i = 1200 \times \frac{1}{6} = 200$

i	1	2	3	4	5	6	Total
$f_i = O_i$	185	239	206	188	174	208	1200
Ei	200	200	200	200	200	200	1200
O _i - E _i	-15	39	6	-12	-26	8	0
7	1,13	7,61	0,18	0,72	3,38	0,32	13,33

$$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$$

$$\sum_{i=1}^{k} \left(\begin{array}{c} O_{i} - E_{i} \end{array} \right)^{2} = \chi^{2}_{Calculado}$$

Critério: Rejeitar H₀ se

 $\chi^2_{Calculado}$ for grande!

Teste de Aderência

H₀: X tem Distribuição Equiprovável H₁: Tal não ocorre

Critério: Rejeitar H_0 se $\chi^2_{\text{Calculado}}$ for grande!

ou seja:

Rejeitar
$$H_0$$
 se $\chi^2_{\text{Calculado}} > \chi^2_{\text{Tabelado}}$

onde:

$$\chi^2_{\text{Tabelado}} = \chi^2_{\text{Crítico}} = \chi^2_{\text{v};\alpha}$$

α: nível de significância (próximo slide)

$$v = k - 1 - m$$

k : número de classes

m : número de parâmetros estimados, a partir da amostra

No caso:
$$v = k - 1 - m$$

$$v = 6 - 1 - 0 = 5$$

α: nível de significância

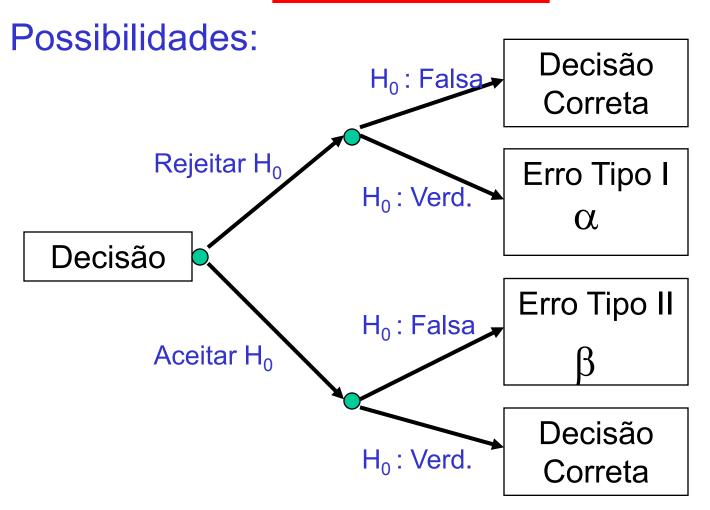
Problema:

H₀: X tem Distr. Equiprovável (dado honesto)

H₁: Tal não ocorre (dado viciado)

Rejeitar H₀ se

$$\chi^2_{\rm Calculado} > \chi^2_{\rm Crítico}$$

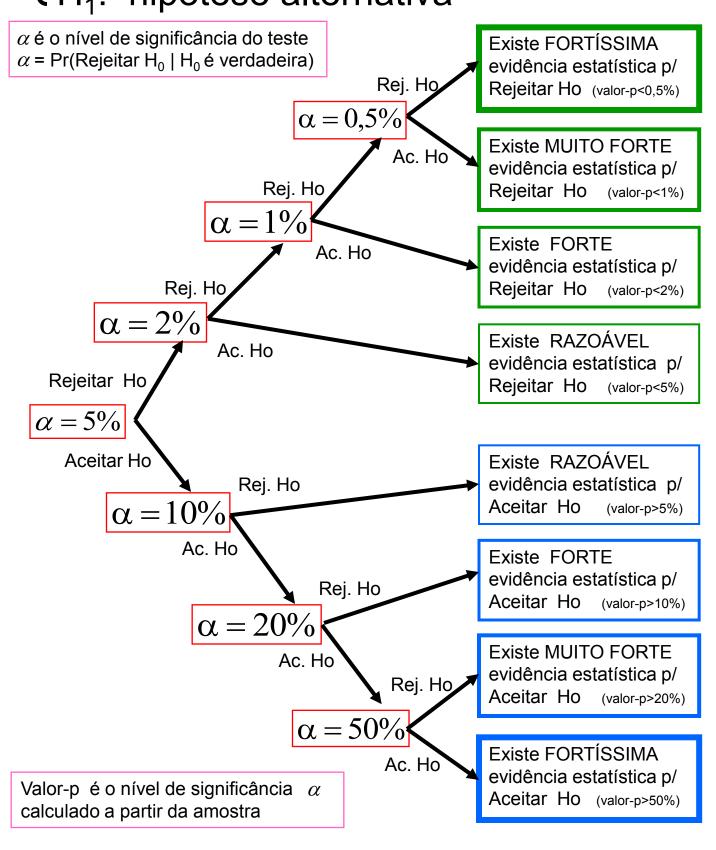


O: Probabilidade admissível de se cometer o erro de Rejeitar H₀ e H_o é Verdadeira

No Problema acima: pode-se considerar admissível correr um risco de 5% de decidir que o dado é não honesto quando de fato ele é honesto, ou seja admitir uma probabilidade de 5% de se errar ao tomar tal decisão.

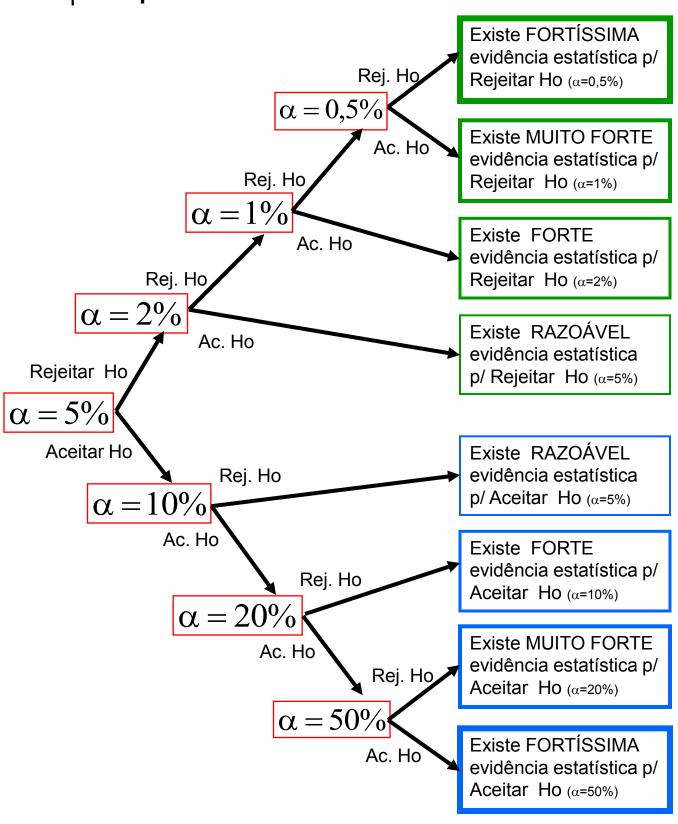
ESQUEMA PARA TOMADA DE DECISÃO

∫H₀: hipótese básica H₁: hipótese alternativa



∫ H₀: hipótese básica

ใ H₁: hipótese alternativa



α: nível de significância

Problema:

H₀: X tem Distr. Equiprovável (dado honesto)

H₁: Tal não ocorre (dado viciado)

Rejeitar H₀ se

$$\chi^2_{\rm Calculado} > \chi^2_{\rm Crítico}$$

onde:

$$\chi^2_{\text{Calculado}} = 13,33$$
 (vide slide 10-3)

$$\chi^2_{Cr ext{itico}} = \chi^2_{v;\alpha}$$

$$v = 6 - 1 - 0 = 5$$

Para:

α	$\chi^2_{5;\alpha}$	Logo:	Portanto:
5%	11,07	$\chi^2_{\text{Calculado}} > \chi^2_{\text{Crítico}}$	Rejeitar H ₀
1%	15,08	$\chi^2_{\text{Calculado}} < \chi^2_{\text{Crítico}}$	Aceitar H ₀

Comentário: existe razoável (α = 5%) evidência estatística para Rejeitar H₀, para afirmar que X não tem Distr. Equiprovável, isto é, que o dado não é honesto. Por outras palavras: pode-se decidir que o dado não é honesto, se considerar admissível correr um risco de 5% de errar ao tomar tal decisão.

Teste de Aderência

Distribuição da População é Normal, ou H₀: Distribuição da População é Norma Exponencial, ou Binomial, etc., etc.

Tal não ocorre

Teste de Aderência pelo Método χ^2

Variável de Teste:
$$\chi_{\nu}^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \sum_{i=1}^{k} \frac{O_{i}^{2}}{E_{i}} - n$$

Onde:

O_i = Freqüência observada

E_i = Freqüência esperada (segundo a Distribuição testada)

 $E_i = n * p_i$ $E_i \ge 5$ (aproximação Binomial \rightarrow Normal)

p_i = probabilidade (segundo a distribuição testada) de se obter um valor da Variável Aleatória na classe i

$$n = \sum_{i=1}^{k} O_i = \sum_{i=1}^{k} E_i$$

v = k - 1 - m (Graus de Liberdade da χ^2)

k = número de classes, tal que $E_i \ge 5$

m = número de parâmetros estimados independentemente, a partir da amostra

Método χ^2 mais indicado para Distribuições Discretas

H₀: Distribuição da População é Normal, ou Exponencial, ou Binomial, etc., etc.
 H₁: Tal não ocorre

CRITÉRIO ou REGRA DE DECISÃO:

Rejeitar H₀ se

$$\chi^2_{
m calculado} > \chi^2_{
m CRÍTICO}$$

Onde:

$$\chi_{\text{calc}}^2 = \sum_{i=1}^k \frac{\left(O_i - E_i\right)^2}{E_i} = \sum_{i=1}^k \frac{O_i^2}{E_i} - n$$

$$\chi^2_{\text{CRÍTICO}} = \chi^2_{v,\alpha}$$
 (Tabelado)

Exemplo: amostra de tamanho n = 100

N° de defeitos (x _i)	0	1	2	3	4	5	6	7	8	
N° de aparelhos (f _i)	25	35	18	13	4	2	2	1	0	•••

Testar: H_0 : Distribuição do nº de defeitos é *Poisson* H_1 : Tal não ocorre

<u>Critério:</u> Rejeitar Ho se $\chi_{\nu}^2 > \chi_{CRÍTICO}^2$

Distribuição *Poisson*:
$$p_r = \Pr(X = r) = \frac{\mu^r * e^{-\mu}}{r!}$$
 $(r = 0, 1, 2, ...)$

Parâmetro da Poisson µ estimado por: X

$$\frac{1}{x} = \frac{\sum x_i * f_i}{n} = \frac{0 * 25 + 1 * 35 + 2 * 18 + 3 * 13 + 4 * 4 + 5 * 2 + 6 * 2 + 7 * 1}{100} = 1,55$$

Logo:

$$p_0 = \Pr(X = 0) = \frac{(1,55)^0 * e^{-1,55}}{0!} = \frac{1 * e^{-1,55}}{1} = 0,212$$

$$p_1 = \Pr(X = 1) = \frac{(1,55)^1 * e^{-1,55}}{1!} = 1,55 * e^{-1,55} = 0,329$$

e assim por diante...

Exemplo: amostra de tamanho n = 100

N° de defeitos (x _i)	0	1	2	3	4	5	6	7	8	•••
N° de aparelhos (f _i)	25	35	18	13	4	2	2	1	0	

Xi	$f_i = O_i$	$x_i * f_i$	$\mathbf{p_i}$	$\mathbf{E_i} = \mathbf{n^*p_i}$	O_i - E_i	$(O_i - E_i)^2$	$(O_i - E_i)^2 / E_i$
0	25	0	0,212	21,2	3,8	14,44	0,618
1	35	35	0,329	32,9	2,1	4,41	0,134
2	18	36	0,255	25,5	-7,5	56,25	2,206
3	13	39	0,132	13,2	-0,2	0,04	0,003
4	4	16	0,051	5,1			
5	2 9	10	0,016	1,6 7,2	1,8	3,24	0,450
6	2	12	0,004	0,4			
7	1	7	0,001	0,1			
$\mathbf{\Sigma}$	100	155	1,0	100			$3,474 = \chi^2_{\nu}$

Determinação de $\chi^2_{\nu, \alpha \text{ (crítico)}}$

E_i≥5 (exigência)

Para $\alpha = 5\%$, tem-se: $\chi^2_{3,5\%} = 7,815$ (Tabelado)

Logo:

$$\chi^2_{\text{v}} < \chi^2_{\text{v, }\alpha \text{ (crítico)}} \implies ACEITA-SE H_0$$
(3,474 < 7, 815)

Conclusão: para um nível de significância de 5%, não pode-se rejeitar que o número de defeitos por aparelho **ADERE** à Distribuição de *Poisson*. No entando, nada nos garante que de fato a Distribuição seja *Poisson*!!!

Exemplo 2: (Exercício 04, p.148, COSTA NETO): Osciloscópio

H₀: Distribuição dos pontos é **uniforme** (proporcional à área do alvo)

H₁: Tal não ocorre

<u>Critério</u>: Rejeitar Ho se $\chi_{\nu}^2 > \chi_{CRÍTI/CO}^2$

 $E_i = n * p_i$ onde:

 p_i = Prob. de existir pontos na região i

Distribuição Uniforme:

$$p_1 = p_2 = p_3 = p_4 = \frac{A_i}{A_T} = \frac{1/4 \cdot \pi \cdot (R^2 - (R/2)^2)}{\pi \cdot R^2} = \frac{3}{16}$$

$$p_5 = p_6 = p_7 = p_8 = \frac{A_i}{A_T} = \frac{1/4 \cdot \pi \cdot (R/2)^2}{\pi \cdot R^2} = \frac{1}{16}$$

Região i	$f_i = O_i$	p_{i}	E _i =n.p _i	$(O_i - E_i)$	$(O_i - E_i)$	$)^2/E_i$
----------	-------------	---------	----------------------------------	---------------	---------------	-----------

		• •		\ 1 1 7	` ' '
1	16	3/16	22,5	-6,5	1,88
2	14	3/16	22,5	-8,5	3,21
3	19	3/16	22,5	-3,5	0,54
4	21	3/16	22,5	-1,5	0,10
5	8	1/16	7,5	0,5	0,03
6	12	1/16	7,5	4,5	2,70
7	13	1/16	7,5	5,5	4,03
8	17	1/16	7,5	9,5	12,03
Total	120	1	120	0	24,53

Determinação de $\chi^2_{\nu, \alpha \text{ (crítico)}}$ com $\nu = k-1-m = 8-1-0 = 7$

Para $\alpha = 5\%$: $\chi^2_{7,5\%} = 14,067$ (Tabela)

Logo: $\chi^2_{\nu} > \chi^2_{\nu, \alpha \text{ (crítico)}}$

(24.79 > 14.067)

REJEITA-SE Ho

Para um nível de significância de 5%, o número de pontos por região *NÃO ADERE* à **Distribuição Uniforme**

 R_2

 R_6

 R_8

12

 R_1

 R_5

13

16

19

Teste de Aderência pelo Método K-S

Método devido à Kolmogorov - Smirnov

H₀: Distribuição da População é Normal, ou Exponencial, ou Binomial, etc., etc.

H₁: Tal não ocorre

CRITÉRIO: REJEITAR H_0 se $d > d_{Crítico}$ (slide 10-14)

$$d = \max |F(x) - G(x)|$$

onde:

- $F(x) = P(X \le x)$: Função Distribuição Acumulada da Distribuição considerada na hipótese básica (H_0)
- G (x): Função Distribuição Acumulada da amostra (freqüências relativas acumuladas)
- Método K-S é exato para Distribuições contínuas de parâmetros conhecidos, não dependendo do tamanho da amostra, como é o caso do Método Qui-quadrado.
- Método K-S é mais sensível no entorno do centro da Distribuição do que nas extremidades
- Método K-S é aproximado para Distribuições discretas, Distribuições com parâmetros desconhecidos, ou quando os dados estão agrupados em classes. Nesses casos utilizar o Método Qui-quadrado

Teste de Aderência pelo Método K-S

Valores Críticos: d_{CRÍTICO}

			α		
n	0.20	0.10	0.05	0.02	0.01
1	0.900	0.95	0.975	0.990	0.995
2	0.684	0.776	0.842	0.900	0.929
3	0.565	0.636	0.708	0.785	0.829
4	0.493	0.565	0.624	0.689	0.734
5	0.447	0.509	0.563	0.627	0.669
6	0.410	0.468	0.519	0.577	0.617
7	0.381	0.436	0.483	0.538	0.576
8	0.358	0.410	0.454	0.407	0.542
9	0.339	0.387	0.430	0.480	0.513
10	0.323	0.369	0.409	0.457	0.489
11	0.308	0.352	0.391	0.437	0.468
12	0.296	0.338	0.375	0.419	0.449
13	0.285	0.325	0.361	0.404	0.432
14	0.275	0.314	0.349	0.390	0.418
15	0.266	0.304	0.338	0.377	0.404
16	0.258	0.295	0.327	0.366	0.392
17	0.250	0.286	0.318	0.355	0.381
18	0.244	0.279	0.309	0.346	0.371
19	0.237	0.271	0.301	0.337	0.361
20	0.232	0.265	0.294	0.329	0.352

			α		
n	0.20	0.10	0.05	0.02	0.01
21	0.226	0.259	0.287	0.321	0.344
22	0.221	0.253	0.281	0.314	0.337
23	0.216	0.247	0.275	0.307	0.330
24	0.212	0.242	0.269	0.301	0.323
25	0.208	0.238	0.264	0.295	0.317
26	0.204	0.233	0.259	0.290	0.311
27	0.200	0.229	0.254	0.284	0.305
28	0.197	0.225	0.250	0.279	0.300
29	0.193	0.221	0.246	0.275	0.295
30	0.190	0.218	0.242	0.270	0.290
31	0.187	0.214	0.238	0.266	0.285
32	0.184	0.211	0.234	0.262	0.181
33	0.182	0.208	0.231	0.258	0.277
34	0.179	0.205	0.227	0.254	0.273
35	0.177	0.202	0.224	0.251	0.269
36	0.174	0.199	0.221	0.247	0.265
37	0.172	0.196	0.218	0.244	0.262
38	0.170	0.194	0.215	0.241	0.258
39	0.168	0.191	0.213	0.238	0.255
40	0.165	0.189	0.210	0.235	0.252

Para n>40, os Valores Críticos (d_{CRÍTICO}) podem ser aproximados pelas seguintes expressões:

		α		
0.20	0.10	0.05	0.02	0.01
1.07	1.22	1.36	1.52	1.63
\sqrt{n}	$\frac{1}{\sqrt{n}}$	\sqrt{n}	\sqrt{n}	\sqrt{n}

Teste de Aderência pelo Método K-S

Exemplo: (Exemplo 01, p. 134-5, COSTA NETO)

Amostra: n = 10, apresentou os seguintes valores:

27,8	29,2	30,6	27,0	33,5
29,5	27,3	25,4	28,0	30,2

 H_0 : Distribuição dos valores é Normal de $\mu = 30$ e $\sigma = 2$

H₁: Tal não ocorre Critério: Rejeitar Ho se d> d_{CRÍTICO}

onde: $d = \max |F(x) - G(x)|$

X	$z = (x - \mu)/\sigma$	F (x)	G(x)	F(x) - G(x)	
		(A 6.2)		ESQ.	DIR.
			0,00		
25,4	- 2,30	0,0107	0,10	0,0107	0,0893
27,0	- 1,50	0,0668	0,20	0,0332	0,1332
27,3	- 1,35	0,0885	0,30	0,1115	0,2115
27,8	- 1,10	0,1357	0,40	0,1643	0,2643
28,0	- 1,00	0,1587	0,50	0,2413	0,3413
29,2	- 0,40	0,3446	0,60	0,1554	0,2554
29,5	- 0,25	0,4013	0,70	0,1987	0,2987
30,2	0,10	0,5398	0,80	0,1602	0,2602
30,6	0,30	0,6779	0,90	0,1221	0,2221
33,5	1,75	0,9959	1,00	0,0599	0,0401

$$d = \max |F(x) - G(x)| = 0,3413 < d_{Crítico} = 0,369 \text{ (tab. 6.2, } \alpha = 10\%)$$

ACEITA-SE H₀

Conclusão: para um nível de significância de 10%, pode-se considerar que os valores obtidos **ADEREM** à Distribuição Normal, logo há forte evidência estatística que a Distribuição seja Normal de $\mu = 30$ e $\sigma = 2$

Teste de Aderência pelo Método A-D

Método de Anderson-Darling (A-D):

Variável de teste: $A^2 = -n - S$

Onde:

$$S = \sum_{i=1}^{n} \frac{(2i-1)}{n} \cdot \left(\ln(F(Y_i) + \ln(1 - F(Y_{n+1-i}))) \right)$$

F (Y_i): Função Distribuição Acumulada da amostra (freqüências relativas acumuladas)

CRITÉRIO:

REJEITAR H_0 se A^2 > Valor Crítico

(Tabelado)

Os valores críticos dependem da específica Distribuição que está sendo testada

Método A-D é mais sensível nas extremidades da Distribuição

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm

(acesso: 05/08/2004)