
# Inspeção da Qualidade



**Prof. MSc. Fabrício Maciel Gomes** 

### Inspeção por Amostragem

- Avaliação de característica de qualidade de unidades selecionadas aleatoriamente;
  - √ Alternativa para inspeção 100%;
  - √ Obrigatória quando a avaliação de qualidade requer teste destrutivo.

- Inspeção por amostragem de itens de lote de entrega
- Dependendo da quantidade de defeituosos da amostra, o lote é aceito ou rejeitado
- O lote rejeitado é devolvido ao fornecedor
- A tendência é substituí-la por trabalho com os fornecedores visando assegurar a qualidade de seus produtos

### Teste de Hipóteses

Associado à inspeção para aceitação:

$$H_0$$
:  $p = p_0$   
 $H_1$ :  $p > p_0$ 

- P: proporção de defeituosos do processo
- Risco α: Risco do produtor
   √ Não aceitação de lote de boa qualidade
- Risco β: Risco do consumidor
   √ Aceitação de lote de má qualidade

d: quantidade de defeituosos na amostra:
 d ~ hipergeométrica

$$Pr[d = d_0] = \frac{\binom{D}{d_0} \binom{m-D}{n-d_0}}{\binom{m}{n}}$$
(9.1)





AMOSTRA

 Exemplo: Probabilidade de 2 itens amostrais defeituosos

 $\sqrt{\text{Lote de } 200 \text{ itens com } 10 \text{ itens defeituosos;}}$ 

√ Amostra de 20 unidades

$$\sqrt{m} = 200$$
;  $D = 10$ ;  $n = 20$ ;  $d = 2$ .

$$\Pr[d=2] = \frac{\binom{10}{2}\binom{200-10}{20-2}}{\binom{200}{20}} = 0,198$$

D: número de defeituosos no lote

 $D \sim binomial (m,p)$ 

p: proporção de defeituosos no processo

$$\Pr(D = D_0) = \binom{m}{D_0} p^{D_0} (1 - p)^{m - D_0}$$

• Probabilidade de um lote de 200 itens conter 10 itens defeituosos com p = 0, 1.

$$\Pr(D=10) = {200 \choose 10} 0, 1^{10} (1-0,1)^{200-10} = 0,0045$$

Probabilidade de 2 defeituosos na amostra

$$\Pr\{d = d_0\} = \sum_{D_0=0}^{200} \Pr\{d = d_0 \mid D = D_0\} \Pr\{D = D_0\}$$

$$Pr[d = 2 | D = D_0]$$
 e  $Pr[D = D_0]$ 

| $D_0$ | $Pr[D = D_0]$ | $Pr[d = 2   D = D_0]$ | $D_0$ | $Pr[D = D_0]$ | $Pr[d=2 \mid D=D_0]$ |
|-------|---------------|-----------------------|-------|---------------|----------------------|
| 10    | 0,0045        | 0,1975                | 21    | 0,0892        | 0,2989               |
| 11    | 0,0087        | 0,2186                | 22    | 0,0806        | 0,2957               |
| 12    | 0,0153        | 0,2373                | 23    | 0,0693        | 0,2911               |
| 13    | 0,0245        | 0,2536                | 24    | 0,0568        | 0,2853               |
| 14    | 0,0364        | 0,2674                | 25    | 0,0444        | 0,2784               |
| 15    | 0,0501        | 0,2787                | 26    | 0,0332        | 0,2706               |
| 16    | 0,0644        | 0,2875                | 27    | 0,0238        | 0,2620               |
| 17    | 0,0775        | 0,2939                | 28    | 0,0163        | 0,2528               |
| 18    | 0,0875        | 0,2982                | 29    | 0,0108        | 0,2431               |
| 19    | 0,0931        | 0,3003                | 30    | 0,0068        | 0,2330               |
| 20    | 0,0936        | 0,3005                |       |               |                      |

$$\Pr\{d=2\} = \sum_{D_0=0}^{200} \Pr\{d=2 \mid D=D_0\} \Pr\{D=D_0\} = 0,285$$

## **Aproximação**

• Se n/m = 0.10 então  $P\{d = d_0\}$  pode ser obtido com boa precisão considerando:

 $d \sim binomial(n, p)$ 

$$\Pr\{d=2\} = \binom{n}{d} p^{d_0} (1-p)^{n-d_0} = \binom{20}{2} 0,10^2 (1-0,10)^{18} = 0,285$$

Lote com 200 itens

$$\sqrt{H_0}$$
:  $p = 0.01$  vs.  $H_1$ :  $p > 0.01$ 

- Plano Amostral
  - √ amostra de 5 itens
  - √ Critério de aceitação: todos os itens amostrais considerados não defeituosos
- Risco do fabricante:

$$\alpha = 1 - P\{d = 0\} = 1 - 0.99^{5} = 0.049$$
  
 $\alpha \approx 5\%$ 

· Risco do consumidor

| $p_1$ | β    |
|-------|------|
| 0,02  | 0,90 |
| 0,04  | 0,82 |
| 0,06  | 0,73 |
| 0,10  | 0,59 |

$$\beta_{0,02} = P\{d = 0 \mid p_1 = 0,02\} = 0,98^5 = 0,904$$
  
 $\alpha \approx 5\%$ 

#### Comentários

- Para aproximar os riscos α e β pela binomial, deve-se considerar constante a probabilidade de um item ser defeituoso;
- Na realidade, a probabilidade de um item defeituoso na amostra ser defeituoso depende da proporção de defeituosos no lote;
- Se n/m = 0,10 a aproximação é satisfatória

### Amostragem Simples por Atributos

Parâmetros do plano amostral:

```
√ Tamanho da amostra: n
√ Número de aceitação: Ac
```

Critério de aceitação do lote:

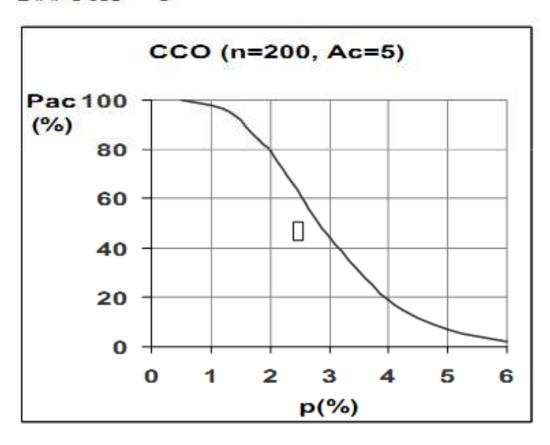
```
\sqrt{\text{Número de defeituosos}} = Ac
```

 Cada plano amostral está associado a uma única curva característica de operação (CCO)

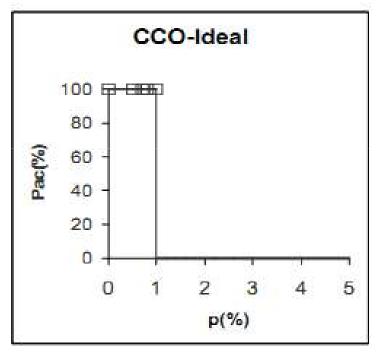
```
\sqrt{P_{ac}} vs. p
```

- P<sub>ac</sub>: probabilidade de aceitação do lote
- p: proporção de defeituosos

#### Plano Amostral:

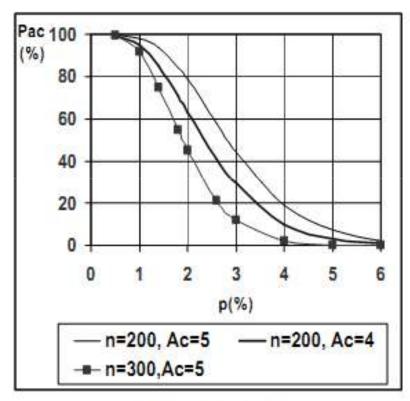

$$\sqrt{n} = 200 e Ac = 5$$

Valores de p e Pac do Plano de Amostragem


| p(%) | $\lambda = np$ | $P_{ac}(\%)$ |
|------|----------------|--------------|
| 0,5  | 1,0            | 99,9         |
| 1,0  | 2,0            | 98           |
| 1,4  | 2,8            | 93           |
| 1,8  | 3,6            | 84           |
| 2,0  | 4,0            | 79           |
| 2,6  | 5,2            | 58           |
| 3,0  | 6,0            | 44           |
| 4,0  | 8,0            | 19           |
| 5,0  | 10,0           | 7            |
| 6,0  | 12,0           | 2            |

$$P_{ac}(0,02) = P\{d \le 5 \mid p = 0,02\} = \sum_{i=0}^{5} {200 \choose i} 0,02^{i} (1-0,02)^{200-i} = 0,787$$

• Curva característica de operação do plano amostral  $\sqrt{n} = 200 e Ac = 5$ 




 Curva característica de operação ideal para p<sub>0</sub>=0,01



Todos os lotes com p = 0.01 seriam aceitos e aqueles com p > 0.01 seriam rejeitados

 Efeito de n e Ac na probabilidade de aceitação de lote



- Aumento de n ou redução de Ac:
  - aumento do *risco* α: ruim para fabricante
  - diminuição do risco β: bom para consumidor

 É necessária mais informação para a redução simultânea de α e β
 √ Aumento de n e Ac

#### Parâmetros de Entrada

- NQA Nível de qualidade aceitável
  - $\sqrt{p_0}$ : máxima proporção de defeituosos que o consumidor considera satisfatória como média do processo
- NQI Nível de qualidade inaceitável
  - $\sqrt{p_1}$ : proporção de defeituosos que o consumidor considera totalmente insatisfatória como média do processo

- α: risco que o fabricante está disposto a aceitar
   √ rejeição de lote de boa qualidade
- β: risco que o comparador está disposto a aceitar
   √ aceitação de lote de má qualidade
- Deseja-se determinar:
   √ tamanho da amostra (n)
   √ número de aceitação (Ac)
- Mesmo problema de determinação de parâmetros de carta np

### Exemplo

Determinação de plano amostral com:

$$\sqrt{\alpha} = 0.02$$

$$\sqrt{\beta} = 0.10$$

$$\sqrt{NQA} = 1\%$$

$$\sqrt{NQI} = 5\%$$

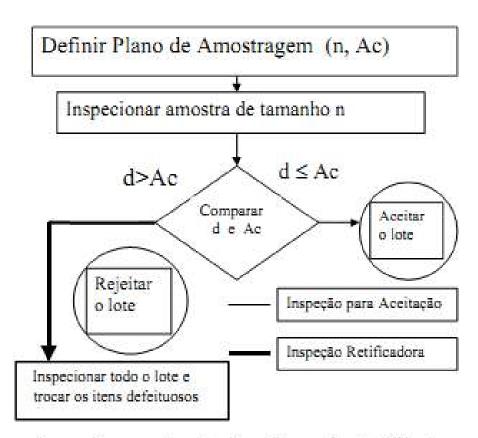
Solução ótima:

$$\sqrt{n} = 184$$

$$\sqrt{Ac} = 5$$

Solução Boa:

√ Algoritmo da Seção 8.3.1


Determinação do Plano de Amostragem

| -  | d | $P_{ac}^{0}$ (= $\alpha$ ) | $\lambda_0$ | n   | $\lambda_1$ =np <sub>1</sub> | $P_{ac}^{l}$ (= $\beta$ )     |
|----|---|----------------------------|-------------|-----|------------------------------|-------------------------------|
| 32 | 3 | 0,9810                     | 1,00        | 100 | 5                            | 0,27                          |
|    | 4 | 0,9814                     | 1,50        | 150 | 7,5                          | 0,13                          |
|    | 5 | 0,9834                     | 2,00        | 200 | 10                           | <b>0,07</b> (<0,10 ⇒ solução) |

Em geral a solução boa apresenta um *n* ligeiramente maior que aquele da solução ótima

### Inspeção Retificadora

- Lotes rejeitados são submetidos à inspeção 100%
- Todos os itens defeituosos do lote são substituídos por itens bons
- Na inspeção para aceitação:
  - √ Os lotes rejeitados são devolvidos para o fornecedor



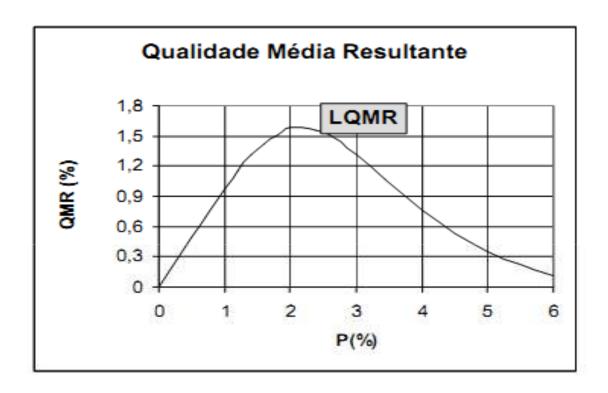

Inspeção para Aceitação e Inspeção Retificadora

### Vantagem

Após a comercialização de uma série de lotes

√ proporção média de defeituosos (q) que o comprador é menor que p (proporção média de defeituosos do processo de fabricação)

Após a comercialização de uma série de lotes




- proporção média de defeituosos (q) que o comprador adquire é menor que a proporção média de defeituosos do processo de fabricação (p)
- QMR Qualidade média resultante:
  - √ Proporção média de defeituosos (q) que o comprador adquire com a inspeção retificadora

$$QMR = p \times P_{ac} + 0 \times (1 - P_{ac}) = p \times P_{ac}$$

• Para o plano amostral com n = 200 e Ac = 5:

| p(%) | $\lambda = np$ | P <sub>ac</sub> (%) | QMR  |  |
|------|----------------|---------------------|------|--|
| 0,0  | 0              | 100                 | 0    |  |
| 0,5  | 1,0            | 99,9                | 0,50 |  |
| 1,0  | 2,0            | 98                  | 0,98 |  |
| 1,4  | 2,8            | 94                  | 1,32 |  |
| 1,8  | 3,6            | 84                  | 1,51 |  |
| 2,0  | 4,0            | 79                  | 1,58 |  |
| 2,4  | 4,8            | 65                  | 1,56 |  |
| 2,6  | 5,2            | 58                  | 1,51 |  |
| 3,0  | 6,0            | 44                  | 1,32 |  |
| 4,0  | 8,0            | 19                  | 0,76 |  |
| 5,0  | 10,0           | 7                   | 0,35 |  |
| 6,0  | 12,0           | 2                   | 0,12 |  |



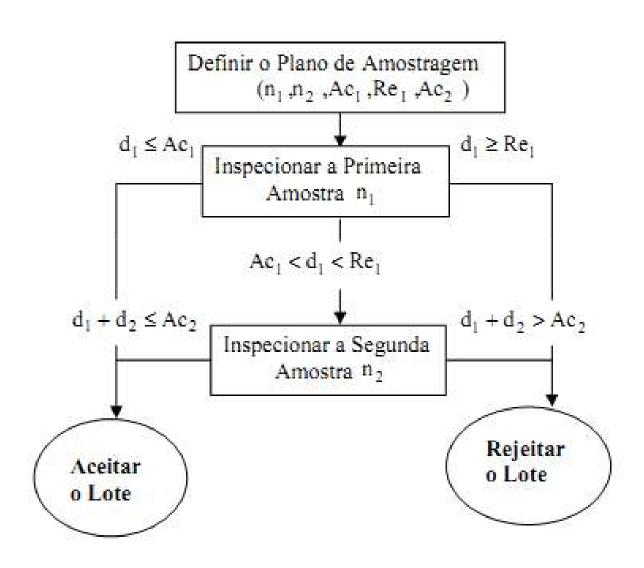
- LQMR Limite da Qualidade Média Resultante:
  - √ Máxima proporção média de defeituosos que o consumidor adquire com a inspeção retificadora

#### Comentários

- Para valores pequenos de p a maioria dos lotes é aceita e QMR ~ p;
- À medida que p cresce, diminui a probabilidade de o lote ser aceito
  - √ maior quantidade de lotes submetidos à inspeção 100%
  - √ diminuição da QMR

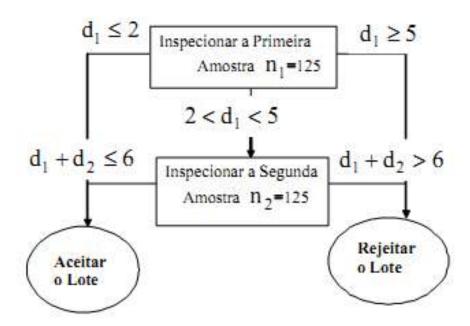
### Planos de Amostragem Dupla

Objetivo:


√ Reduzir a quantidade de itens do lote a inspecionar

Parâmetros:

```
\sqrt{n_1} e n_2: tamanhos de amostra \sqrt{Ac_1} e Ac_2: números de aceitação \sqrt{Re_1}: número de rejeição
```


#### Critério:

```
\sqrt{\text{Retira-se amostra de tamanho } n_1}
\sqrt{\text{Se } d_1 = Ac_1}, aceita-se o lote
\sqrt{\text{Se } d_1 = Ac_1}, rejeita-se o lote;
\sqrt{\text{Se } Ac_1 < d_1 < Re_1}: retira-se 2ª. Amostra
-\text{Se } d_1 + d_2 = Ac_2: aceita-se o lote
-\text{Em caso contrário ele é rejeitado}
```



Amostragem dupla com plano:

$$\sqrt{n_1} = n_2 = 125;$$
  
 $\sqrt{Ac_1} = 2; Re_1 = 5 \text{ e } Ac_2 = 6$ 



 Probabilidade de aceitação do lote na 1<sup>a</sup>. amostragem:

$$P_{ac}^1 = P\{d_1 \le 2\}$$

 Probabilidade de aceitação do lote na 2<sup>a</sup>. amostragem:

$$P_{ac}^2 = P\{d_2 \le 3 \mid d_1 = 3\} \times P\{d_1 = 3\} + P\{d_2 \le 2 \mid d_1 = 4\} \times P\{d_1 = 4\}$$

Probabilidade de o lote ser aceito:

$$P_{ac} = P_{ac}^1 + P_{ac}^2$$

#### Valores de p e Pac (amostragem dupla)

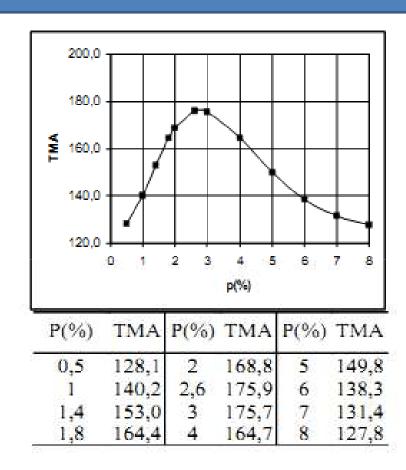
| p(%) | $\lambda = n_1 p$ | $P_{ac}^{1}$ | Pr[d <sub>1</sub> =3] | Pr[d <sub>1</sub> =4] | Pr[d <sub>2</sub> ≤ 3] | Pr[d <sub>2</sub> ≤ 2] | P <sub>ac</sub> <sup>2</sup> | Pac  |
|------|-------------------|--------------|-----------------------|-----------------------|------------------------|------------------------|------------------------------|------|
| 0,5  | 0,625             | 0,97         | 0,02                  | 0,00                  | 1,00                   | 0,97                   | 0,02                         | 1,00 |
| 1,0  | 1,25              | 0,87         | 0,02                  | 0,03                  | 0,96                   | 0,87                   | 0,02                         | 0,98 |
| 1,4  | 1,75              | 0,74         | 0,16                  | 0,07                  | 0,90                   | 0,74                   | 0,19                         | 0,94 |
| 1,8  | 2,25              | 0,61         | 0,20                  | 0,11                  | 0,81                   | 0,61                   | 0,23                         | 0,84 |
| 2,0  | 2,50              | 0,54         | 0,22                  | 0,13                  | 0,76                   | 0,54                   | 0,24                         | 0,78 |
| 2,6  | 3,25              | 0,37         | 0,22                  | 0,18                  | 0,59                   | 0,37                   | 0,20                         | 0,57 |
| 3,0  | 3,75              | 0,27         | 0,21                  | 0,20                  | 0,48                   | 0,27                   | 0,15                         | 0,43 |
| 4,0  | 5,00              | 0,12         | 0,14                  | 0,18                  | 0,26                   | 0,12                   | 0,06                         | 0,18 |
| 5,0  | 6,25              | 0,05         | 0,08                  | 0,12                  | 0,12                   | 0,05                   | 0,02                         | 0,06 |
| 6,0  | 7,50              | 0,02         | 0,04                  | 0,07                  | 0,05                   | 0,02                   | 0,00                         | 0,02 |

#### Comentários

 As probabilidades de aceitação são semelhantes àquelas obtidas com o plano de amostragem simples (n = 200; Ac = 5);

### TMA – Tamanho Médio das Amostras

#### TMA – Tamanho Médio das Amostras


Número de itens inspecionados:

$$\sqrt{n} = 125$$
 se não for necessária 2ª. amostragem;  
 $\sqrt{N} = 250$  caso ela seja necessária

- Probabilidade da  $2^a$ . amostragem:  $\sqrt{P\{d_1 = 3 \text{ ou } d_1 = 4\}}$
- TMA Tamanho médio das amostras

$$TMA = 125 + 125 \times [P\{d_1 = 3\} + P\{d_1 = 4\}]$$

### TMA – Tamanho Médio das Amostras



O TMA não ultrapassa 180 itens