Stoichiometric Table for Batch Reactors

Reaction stoichiometry and conversion control how N_T changes in the system

$$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$

Species	Initial Amount (mol)	Change (mol)	Remaining (mol)
A	N_{A0}	$-(N_{A0}X_A)$	$N_A = (N_{A0} - N_{A0} X_A)$
В	$N_{{\scriptscriptstyle B}0}$	$-\frac{b}{a}(N_{A0}X_A)$	$N_B = (N_{B0} - \frac{b}{a} N_{A0} X_A)$
С	N_{c0}	$\frac{c}{a}(N_{A0}X_A)$	$N_C = (N_{C0} + \frac{c}{a} N_{A0} X_A)$
D	N_{D0}	$\frac{d}{a}(N_{A0}X_A)$	$N_D = (N_{D0} + \frac{d}{a}N_{A0}X_A)$
I (inert)	N_{I0}	0	$N_I = N_{I0}$
Total	N_{T0}		$N_{\scriptscriptstyle T} = N_{\scriptscriptstyle T0} + \delta N_{\scriptscriptstyle A0} X_{\scriptscriptstyle A}$

 δ = increase in the total number of moles per mole of A reacted

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

Stoichiometric Table for Flow Reactors

Note the similarity between flow and batch reactor stoichiometric tables

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$

Design Equation in Terms of Conversion (limiting reactant A)

IDEAL REACTOR	DIFFERENTIAL FORM	ALGEBRAIC FORM	INTEGRAL FORM
BATCH L	$N_{A0} \frac{dX_A}{dt} = (-r_A)V$		$t = N_{A0} \int_{0}^{X_A} \frac{dX_A'}{-r_A V}$
CSTR		$V = \frac{F_{A0}(X_A)}{(-r_A)}$	
→ PFR →	$F_{A0} \frac{dX_A}{dV} = (-r_A)$		$V = F_{A0} \int_{0}^{X_A} \frac{dX'_A}{-r_A}$ Fogler 2.2-2.3

Summary - Design Equations of Ideal Reactors

	Differential Equation	Algebraic Equation	Integral Equation	Remarks
Batch (well-mixed)	$\frac{dN_j}{dt} = (r_j)V$		$t = \int_{N_{j0}}^{N_j} \frac{dN_j'}{(r_j)V}$	Conc. changes with time but is uniform within the reactor. Reaction rate varies with time.
CSTR (well-mixed at steady-state)		$V = \frac{F_{j0} - F_j}{-(r_j)}$		Conc. inside reactor is uniform. (r _j) is constant. Exit conc = conc inside reactor.
PFR (steady-state flow well-mixed radia	· UV		$V = \int_{F_{j0}}^{F_j} \frac{dF_j'}{(r_j)}$	Concentration and hence reaction rates vary spatially (with length).