Stoichiometric Table for Batch Reactors Reaction stoichiometry and conversion control how N_T changes in the system $$A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$$ | Species | Initial Amount (mol) | Change (mol) | Remaining (mol) | |-----------|-------------------------------|---------------------------|--| | A | N_{A0} | $-(N_{A0}X_A)$ | $N_A = (N_{A0} - N_{A0} X_A)$ | | В | $N_{{\scriptscriptstyle B}0}$ | $-\frac{b}{a}(N_{A0}X_A)$ | $N_B = (N_{B0} - \frac{b}{a} N_{A0} X_A)$ | | С | N_{c0} | $\frac{c}{a}(N_{A0}X_A)$ | $N_C = (N_{C0} + \frac{c}{a} N_{A0} X_A)$ | | D | N_{D0} | $\frac{d}{a}(N_{A0}X_A)$ | $N_D = (N_{D0} + \frac{d}{a}N_{A0}X_A)$ | | I (inert) | N_{I0} | 0 | $N_I = N_{I0}$ | | Total | N_{T0} | | $N_{\scriptscriptstyle T} = N_{\scriptscriptstyle T0} + \delta N_{\scriptscriptstyle A0} X_{\scriptscriptstyle A}$ | δ = increase in the total number of moles per mole of A reacted $$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$ ## Stoichiometric Table for Flow Reactors Note the similarity between flow and batch reactor stoichiometric tables $$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$ ## Design Equation in Terms of Conversion (limiting reactant A) | IDEAL
REACTOR | DIFFERENTIAL
FORM | ALGEBRAIC
FORM | INTEGRAL
FORM | |------------------|------------------------------------|----------------------------------|---| | BATCH
L | $N_{A0} \frac{dX_A}{dt} = (-r_A)V$ | | $t = N_{A0} \int_{0}^{X_A} \frac{dX_A'}{-r_A V}$ | | CSTR | | $V = \frac{F_{A0}(X_A)}{(-r_A)}$ | | | → PFR → | $F_{A0} \frac{dX_A}{dV} = (-r_A)$ | | $V = F_{A0} \int_{0}^{X_A} \frac{dX'_A}{-r_A}$ Fogler 2.2-2.3 | ## Summary - Design Equations of Ideal Reactors | | Differential
Equation | Algebraic
Equation | Integral
Equation | Remarks | |---|----------------------------|-----------------------------------|--|---| | Batch (well-mixed) | $\frac{dN_j}{dt} = (r_j)V$ | | $t = \int_{N_{j0}}^{N_j} \frac{dN_j'}{(r_j)V}$ | Conc. changes with time
but is uniform within the
reactor. Reaction rate
varies with time. | | CSTR
(well-mixed
at steady-state) | | $V = \frac{F_{j0} - F_j}{-(r_j)}$ | | Conc. inside reactor is uniform. (r _j) is constant. Exit conc = conc inside reactor. | | PFR
(steady-state flow
well-mixed radia | · UV | | $V = \int_{F_{j0}}^{F_j} \frac{dF_j'}{(r_j)}$ | Concentration and hence reaction rates vary spatially (with length). |