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The fatigue crack behavior in metals and alloys under constant amplitude test conditions is
usually described by relationships between the crack growth rate da/dN and the stress
intensity factor range DK. In the present work, an enhanced two-parameter exponential
equation of fatigue crack growth was introduced in order to describe sub-critical crack
propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applica-
tions. It was demonstrated that besides adequately correlating the load ratio effects, the
exponential model also accounts for the slight deviations from linearity shown by the
experimental curves. A comparison with Elber, Kujawski and ‘‘Unified Approach’’ models
allowed for verifying the better performance, when confronted to the other tested models,
presented by the exponential model.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Fatigue crack growth (FCG) is a main issue in the life
prediction and maintenance of aircraft structures (Molent
and Barter, 2007). The FCG behavior in metals and alloys
under constant amplitude test conditions is usually de-
scribed by the relationship between the crack growth rate
da/dN and the stress intensity factor range DK. The typical
log–log plots of da/dN versus DK shown schematically in
Fig. 1 have a sigmoidal shape that can be divided into three
regions (Stephens et al., 2001; Suresh, 1998; Jones et al.,
2008; Kohout, 1999). Region I is the near-threshold region,
in which the curve becomes steep and appears to approach
an asymptote DKth, a lower limiting DK value below which
no crack growth is expected to occur. Region II (intermedi-
ate regime) corresponds to stable macroscopic crack
growth. Region III is associated with rapid crack growth
just prior to final failure and is controlled primarily by Kc,
. All rights reserved.
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the fracture toughness for the material and thickness of
interest. A significant portion of fatigue life of mechanical
components is occupied in the subcritical crack growth
(Region II) (Stephens et al., 2001; Dowling, 1999). In sev-
eral parts, particularly those made from sheets or plates
and containing stress concentrators (such as rivet holes),
the existence of a crack is assumed a priori and determin-
ing the number of cycles it takes to reaches the critical size
(Region III) is a design criterion, from which the non-
destructive inspection intervals is established (Dowling,
1999; Lee et al., 2005).

For Region II, where the medium crack propagation
rates (10�8–10�6 m/cycle) occur, an empirical relationship
proposed by Paris and Erdogan (1963) was written in the
form of Eq. (1), which means a straight line in the log–
log fit and where the scaling constants C and n should
represent the FCG resistance of a given material. The Paris
potential equation, in which DK is the main driving force
for fatigue crack growth, became the canonic FCG model:

da
dN
¼ C DKn ð1Þ
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Fig. 1. Total FCG curves for various load ratios.
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It is long observed that, for a fixed DK, da/dN is strongly
influenced by the stress-cycle asymmetry, usually
expressed in terms of the load ratio R (Kmin/Kmax) (Broek
and Shijve, 1963; Forman et al., 1967; Walker, 1970). The
threshold stress intensity values (DKth) were found to de-
pend on R as well (Stephens et al., 2001; Vasudevan and
Sadananda, 1996). Fig. 1 also shows the crack growth rate
curves under different R-ratios, indicating that increasing
R has a tendency to increase da/dN in all portions of the
sigmoidal curve (Stephens et al., 2001). From this finding,
diverse attempts were done in order to obtain the collapse
of several curves produced from da/dN and DK with differ-
ent R to a single curve (Elber, 1971; Noroozi et al., 2007;
Xiaoping and Torgeir, 2007; Kujawski, 2001).

An important result for the proposed question was
given by Elber (1971) that introduced the concepts of crack
closure (Kcl) and effective cyclic stress intensity factor
(DKeff) to explain the effects of R-ratio on fatigue crack
growth in the form of Eq. (2):

da
dN
¼ CðDKeff Þn; DKeff ¼ ðKmax � KclÞ ð2Þ

where Kcl is the stress intensity factor corresponding to the
stress for which the crack remains closed.

Elber assumed that the crack faces remain in contact
during part of the loading cycle. Then DKeff, which depends
on R, corresponds to a fraction of DK in which the crack re-
mains open. Thus, Eq. (2) leads to results for the constants
C and n independent of load ratio R. The closure concept
gives a physical explanation for the so-called R-effects,
but discussions persist about the efficacy of this approach.
Louat et al. (1993) presented the conceptual and experi-
mental difficulties that emerge when the crack closure is
evaluated. Comparative analyses indicated that the open-
ing load value (necessary to calculate Kcl) depends on the
position and the measurement technique. Therefore, the
description of FCG behavior in terms of DKeff is impaired
by the various experimental and conceptual difficulties
associated with the estimation of crack closure. These
include the verification of contradictory results of closure
loading measurements (Philips, 1989; Newman and Elber,
1988), the observation of influences of the location and
employed technique on the crack opening load value
(Macha et al., 1979; Shin and Smith, 1985) and the identi-
fication of the different closure mechanisms and their rel-
ative importance in each specific situation (Louat et al.,
1993; Skelton and Haigh, 1978; Ritchie and Suresh, 1982;
McClung, 1991). Despite this criticism, the crack closure
phenomenon has been largely accepted to explain many
aspects of crack behavior in metallic materials, including
R-effects, variable amplitude loading, microstructure, envi-
ronment and the magnitude of fatigue threshold (Alizadeh
et al., 2007; Ismonov and Daniewicz, 2010).

However, it is a fact that the substitution of DK by DKeff

in Eq. (1) maintains the imposition of the stress intensity
range as the only driving force for FCG. On the other hand,
is known that the unambiguous definition of a cyclic load-
ing needs the use of two independent parameters. From
the five parameters usually employed to define cyclic
loaded cracks (Kmax, Kmin, Kmean, DK, R), only any two of
them are independent (Sadananda and Vasudevan, 2004).
In general, the variation of any of the loading parameters
(except for DK), can cause significant changes in the values
of the C, n constants of Eq. (1). Thus, a way to collapse
curves of different R without the need of the closure data
is to consider da/dN as a function of two independent load-
ing parameters (Zhang et al., 2005; McEvily and Ritchie,
1998). Walker’s approach (Walker, 1970), in which the
crack growth rate is given in terms of Eq. (3), was one of
the first models to adopt two loading parameters. Eq. (3)
is the same as Paris equation when R is zero. This model
is capable of acting with R > 0 but has limitations for
R < 0 (Xiaoping and Torgeir, 2007). Besides, Walker’s ap-
proach does not consider as independent the effects of
the loading parameters on the crack growth rate:

da
dN
¼ C DKnð1� RÞnðm�1Þ ð3Þ

More recently, Kujawski (2001) proposed a new
mechanical driving force parameter for correlation of
R-ratio effects on FCG without utilization of closure data.
According to this proposal, the driving force is based on
the positive part of the applied stress intensity factor
range, DK+, and the maximum value assumed by the stress
intensity factor in the load cycle, Kmax. By adopting this
new parameter, a FCG model was then developed by
Kujawski and Dinda (2004) as Eq. (4):

da
dN
¼ CðDK�Þn; DK� ¼ ðKmaxÞaðDKþÞ1�a ð4Þ

In this model, the value of constant a is determined
from the slopes of the straight lines fitted to the DK and
Kmax pairs at a given growth rate (Kujawski and Dinda,
2004). Kujawski states that by employing the DK⁄ parame-
ter a significant improvement was obtained in correlation
of FCG data in comparison with the conventional Elber’s
closure approach.

Another way to describe the R-effects is to employ at
least two of the loading parameters (Kmax, Kmin, Kmean, DK,
R) which, acting independently, are capable of modeling
each one of the original curves without collapsing them
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as the previously described models did. The original idea of
two driving forces for FCG was first introduced by
Sadananda and Vasudevan and was called the Unified Ap-
proach (UA). These authors claim that fatigue crack growth
rate should be represented in terms of two parameters DK
and Kmax since these are the two driving forces necessary
for a crack to grow (Sadananda and Vasudevan, 1994,
2004, 2003a,b).

Maymon (2005) and Baptista et al. (2006) indepen-
dently presented a potential bi-parametric model ex-
pressed by Eq. (5), in which f and g are two distinct
loading parameters characterizing the driving forces at
the crack tip, for example, DK and Kmax. This natural
improvement of the Walker model, based on UA, assumes
as independent the exponents of the loading parameters.
The model constants C, a, b are determined for a wide
range of loading conditions. It is important to emphasize
that this model is capable of predicting the FCG behavior
under experimental conditions different from those em-
ployed in the calculation of its constants. Another charac-
teristic of such a potential model is that, for the
constants relationships given in Eq. (6), the same results
are obtained for any two parameters that can be employed
to define the loading cycle (Baptista et al., 2006):

da
dN
¼ Cðf ÞaðgÞb ð5Þ

C DKaKb
max ¼ C DKaþbð1� RÞ�b ¼ CKaþb

maxð1� RÞa ð6Þ

On the other hand, it is well known that the real fatigue
data at each stress ratio can show a certain degree of non-
linearity, given by changes in the slope of the da/dN–DK
plots (Swain et al., 1990; Ishii et al., 1999). Recently a
new exponential model, proposed by Adib and Baptista,
has enabled the consideration of the non-linear Region II
da/dN–DK behavior. For a single FCG curve, this Arrhe-
nius-type relation, named ab model, is written in the form
of Eq. (7) (Adib and Baptista, 2007):

da
dN
¼ A exp

b
DK

� �
ð7Þ

where A = ea, a and b being the fitting coefficients.
The FCG behavior of commercially pure titanium for a

range of R-ratios was modeled using Eq. (7) by taking an
average aav and recalculated individual bi values (Adib
and Baptista, 2007). It was then verified that the R-effect
is represented by the variation of these bi values, and a lin-
ear relationship was obtained by plotting bi against log R.

The previous observations form the basis for an en-
hanced exponential equation of FCG, which is introduced
in the present work. Furthermore, a comparison between
FCG models including this new exponential equation, the
two-parameter potential model, Eq. (6), as well as Elber
and Kujawski models, Eqs. (2) and (4), is drawn for 2524-
T3 aluminum alloy data.
Table 1
Material properties.

Material
specification

Yield stress
(MPa)

UTS
(MPa)

Elongation
(%)

Al 2524-T3 340 450 21
2. The enhanced exponential model

Let b in Eq. (7) be a linear function of log R, i.e.,
b = b0 + b1 logR. Then Eq. (7) is re-written as Eq. (8), which
is linearized by defining the Y parameter presented in Eq.
(9):

da
dN
¼ expðaÞ exp

b0 þ b1 log R
DK

� �
ð8Þ
Y ¼ ln
da
dN

DK ¼ aDK þ b0 þ b1 log R ð9Þ

where a, b0 and b1 are the fitting parameters to be deter-
mined and form a single group of constants, whatever
the adopted R-ratio, i.e., they are in fact material constants.
These are to be calculated by the least square method
through the minimization of the total logarithmic error
of crack growth prediction for all available experimental
points from a group of FCG tests under different R-ratios.

The logarithmic square error is calculated as follows:
Let r be the number of loading regimes and p(j) the number
of experimental points of curve ‘‘j’’, j = 1, ...,r. Thus the log-
arithmic error for point ‘‘i’’ of experimental curve ‘‘j’’ is:

Eij ¼ ln
da
dN

� �
ij

DKij � aDKij � b0 � b1 log Rj ð10Þ

The functional of total square error is given by Eq. (11):

ET ¼
Xr

j¼1

XpðjÞ
i¼1

ðEijÞ2 ð11Þ

The necessary minimum error conditions are deter-
mined by the system of Euler’s equations, seen below.
For the considered case, all 3 equations of system (12)
are linear with respect to a, b0 and b1; therefore, the calcu-
lation of material constants is straightforward:

@ET ða;b0 ;b1Þ
@a ¼ 0

@ET ða;b0 ;b1Þ
@b0

¼ 0
@ET ða;b0 ;b1Þ

@b1
¼ 0

8>><
>>: ð12Þ
3. Experimental details

Fatigue crack growth data were collected from the high
strength 2524-T3 aluminum alloy, commonly used in air-
craft engineering applications. The material was received
as plates with 6.35 mm in thickness and its basic mechan-
ical properties, determined from tensile tests, are given in
Table 1. Compact tension specimens, cut in the LT orienta-
tion, were adopted for this work. The FCG tests were con-
ducted at room temperature in laboratory air using a MTS
servo-hydraulic machine and were performed with con-
stant load amplitude under force control. The test fre-
quency was kept constant at 10 Hz and the loading
waveform was sinusoidal. The following load ratios (min/
max) were adopted for the tests: R = 0.05, 0.1, 0.15, 0.30,
0.50 and 0.60. The compliance method of crack length
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monitoring was used during the tests and the five point
incremental polynomial technique was employed for com-
puting the crack growth rate. All of the experimental and
numerical procedures were in conformity with the stan-
dard practice for Measurement of Fatigue Crack Growth
Rates (ASTM E647-08e1). Crack closure measurements
were performed in order to allow DKeff calculations to be
used in FCG modeling according to Elber’s approach. The
linear-quadratic spline method in which the ‘‘load versus
COD’’ plots are modeled using two-section least square fit
curves, was employed in closure calculations. The resulting
FCG data were employed in the models development and
comparison.
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Fig. 2. Region II fatigue crack growth data of 2524-T3 aluminum
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4. Results and discussion

In Fig. 2, the measured Region II crack growth rates, da/
dN, from the six performed experiments are plotted against
the corresponding nominal DK values in log–log scale. As
expected, increasing the R ratio increases da/dN for a given
DK. Moreover, a tendency of the experimental curves to be
closer to each other as R increases can be inferred from the
experimental data. These data are to be modeled according
to Elber’s, Kujawski’s and UA potential equations taken
from literature, as well as the new exponential model
introduced in the present paper.
3020

Pa.m1/2)

alloy as a function of nominal DK for six distinct R-ratios.
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crack size for 2524-T3 aluminum alloy.
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4.1. Elber’s model

From the closure measurements, the values of DKeff

were obtained according to Elber‘s approach. Significant
closure was observed and measured for the tests performed
at R-ratios of 0.05, 0.1 and 0.15; less pronounced closure at
R = 0.3 and virtually no closure occurred at R = 0.5 and
R = 0.6. Fig. 3 shows a plot of closure load results corre-
sponding to the R-ratios for which significant closure was
observed. The data are plotted in terms of the normalized
closure load (Pcl/Pmin), where Pmin is the minimum load of
the cycle, against the normalized crack length (a/W), where
W is the specimen width. An important aspect verified in
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Fig. 3 is that, for a given R, Pcl decreases as the crack length
increases, and even approaches Pmin at the end of stable
crack growth regime. This means that closure description
exclusively in terms of load ratio is not possible, making
it difficult to predict crack closure and DKeff for an untested
R. The results FCG rate versus DKeff are plotted in Fig. 4. By
comparing with the results shown in Fig. 2, it is easily ob-
served that the six experimental data sets become closer
to each other when DKeff is considered, except for the test
at R = 0.05, which is dislocated in the graph. The represen-
tation of all tests by a single curve, as expected by the crack
closure theory, results in C = 9.16E�10 and n = 2.33. The
linear fitting coefficient of correlation R2 is 0.959. The
2416

MPa.m1/2)

loy as a function of DKeff and fitted to Elber’s model.
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used for determination of Kujawski’s a-constant.
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anomalous results at R = 0.05 and inevitable general noise
in closure calculations contributed to this relatively low
R2 statistics.
4.2. Kujawski’s model

FCG modeling with Eq. (4) is preceded by the determina-
tion of constant ‘‘a’’. To do so, the experimental data were
tri-dimensionally treated by using the computer program
Catia™. In this environment the data representing DK, Kmax

and da/dN were manipulated respectively in the axes x, y
and z. Curves representing the various loading conditions
were numerically adjusted to the experimental points. By
using arbitrarily chosen da/dN values, represented by
planes parallel to xy plane, the DK and Kmax values for a
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Fig. 7. Fatigue crack growth data of 2524-T3 aluminum alloy as
given da/dN were determined from the intersections be-
tween these planes and the FCG curves. The obtained re-
sults, as well as the linear fittings from which individual a
values were calculated, are shown in Fig. 5. An average
a = 0.407 was determined as the arithmetic mean of these
values. The driving force parameter DK⁄ was then calcu-
lated for each experimental point and the resulting data
set was fitted to Kujawski’s model as shown in Fig. 6, result-
ing in C = 6.57E�11 and n = 3.08. The coefficient of correla-
tion R2 was 0.972.
4.3. ‘‘Unified’’ model

The experimental points corresponding to the six
adopted loading ratios were simultaneously fitted to a
3020
Pa.m1/2)

y as a function of DK⁄ and fitted to Kujawski’s model.

3020
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a function of nominal DK and fitted to ‘‘unified’’ model.
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two-parameter model in terms of DK and Kmax, as seen in
Eq. (6), by minimization of the logarithmic square error
using an algorithm similar to that described in Eqs. (10)–
(12). Thus, all of the experimental curves are to be de-
scribed with a single group of fitting constants, for which
the encountered values were: C = 9.01E�11, a = 2.10 and
b = 0.946. This ‘‘unified’’ model provides a set of parallel
lines, which are shown in Fig. 7 superimposed to the
experimental points in da/dN–DK plots. It is clear from
Fig. 7 that the model tendency is opposite to ‘‘real’’ behav-
ior as for the description of the R-effect, i.e., the curves be-
come closer to each other as R decreases. This behavior,
inherent to the adopted equation, limits the ability of the
‘‘unified’’ model in precisely describing the experimental
curves.
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Fig. 8. 3D representation of fatigue crack growth data of 2524-T3
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4.4. Exponential model

For each experimental point, the Y parameter was
determined according to Eq. (9) and plotted against DK
and R in a 3-D graph, see Fig. 8. The points clearly form a
plane, whose coefficients a, b0 and b1 were determined
by solving the linear system of Eq. (12), resulting in:
a = �11.96, b0 = �30.88 and b1 = 11.50. The FCG rates were
then calculated from Eq. (8) and plotted in Fig. 9. This fig-
ure allows observing that, besides adequately describing
the R-effect, the exponential model also accounts for the
slight deviations from linearity shown by the experimental
points.

4.5. Model comparison

The efficacy of the tested models can be evaluated
through the normalized sum of residuals corresponding
to the set of experimental points of each curve and calcu-
lated according Eq. (13). In Table 2 these sums (multiplied
by 102) are given for the Elber, Kujawski, ‘‘unified’’ and
exponential models. From these results, the superior per-
formance of the exponential model is evident. The conven-
tional Elber’s model, that utilizes disputable crack closure
data, presented the poorest correlation of the four tested
models. The calculated residuals are also a numerical evi-
dence that Region II fatigue cracks in Al 2524-T3 deviate
3020

Pa.m1/2)

ion of nominal DK and fitted to the enhanced exponential model.

Table 2
Normalized sum of residuals for the tested models (102).

R Elber Kujawski ‘‘Unified’’ Exponential

0.05 28.0 1.7 11.9 0.23
0.10 2.5 1.4 2.1 0.02
0.15 2.9 0.9 0.7 0.24
0.30 1.3 4.9 1.8 0.18
0.50 2.5 1.2 1.2 0.13
0.60 2.2 13.2 9.6 0.25
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from linearity are more precisely described by an exponen-
tial equation.

ResidueðjÞ ¼
XpðjÞ
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da=dNi;exp � da=dNi;calc

da=dNi;exp

� �2
s

=pðjÞ ð13Þ
5. Conclusion

In this work, an enhanced two-parameter exponential
equation of FCG was introduced in order to describe sub-
critical crack growth behavior of Al 2524-T3 alloy. By defin-
ing a so-called Y parameter, this new model preconizes the
existence of a FCG plane of crack propagation in 3D plots
against DK and R. It was demonstrated that besides ade-
quately correlating the R-ratio effects, the exponential mod-
el also accounts for the slight deviations from linearity
shown by the experimental curves. A comparison was made
between the exponential model and other models aimed at
describing FCG for a range of stress ratios: Elber, Kujawski
and a ‘‘unified’’ model. By determining the normalized
sum of residuals corresponding to the set of experimental
points at each of six load ratios, it was verified that the expo-
nential model, by its characteristics, presented a better per-
formance when confronted to the other tested models.
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