CHAPTER 6

HETEROGENEOUS EQUILIBRIA:
VARIABLE COMPOSITION IN
CONDENSED PHASES

6.1 GAS PARTIAL PRESSURE AND FUGACITY
TL analysis of equilibrium systems involving gases has thus far been re-
stricted to consideration of ideal gas behavior. Although such behavior does
not exist at higher pressures, many gases do approach ideal behavior at pres-
sures less than approximately S atmospheres. Hence, the previous equations
developed are reliable for the analysis of gaseous systems at low pressures. If
a pure gas or gas mixture deviates from ideal behavior, it is referred to as a
nonideal or real gas. Because the behavior of a real gas cannot be described
by [1-1], the equation of state is modified. Real gas behavior implies that the
relationship between AG; and In(P;), expressed by [5-7], is no longer valid. In
order to retain linearity, a new thermodynamic property, fugacity, is substi-
tuted for pressure into the differential form of [5-7]. The fugacity, f;, of gas
component i is defined by
dG;=VdP = RTdIn (f)) [6-1]
where f; — P; as P; — 0. With few exceptions, applications discussed in this
book involve low pressures, hence f= P and [5-7] is applicable. For typical
discussions of gases at elevated pressures, the reader is referred to Hamill et
al. (1966, p. 135-139) and Gaskell (1981, p. 188-205).

6.2 THERMODYNAMIC ACTIVITY
Assuming ideal vapor, the activity of a component i is defined by

a;= L‘O = —1-,%- [6-2]
i R
where P; is the vapor pressure of i over i in condensed solution and P,-o and £°
are the vapor pressure and fugacity, respectively, of i over pure condensed i at
the same temperature. Note that P° is normally defined for i in the same state
of aggregation, solid or liquid, as the solution. Substituting [6-2] into [5-5],
G:- G’=RT In(a) [6-3]
where G; and G,-0 are, respectively, the Gibbs free energy of i in condensed
solution and the standard state Gibbs free energy of pure condensed i. Note
that [6-3] reduces to [5-6] or [5-7] for a mixture of gases only since P°= 1.0
and g; = Y;Pr= P;. Incorporating [6-2] into a typical TL involving condensed
state components A and B:
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Aaa=B/P) i » B(ag = Py /FY)

A A

RTIn(a/ag) = RTin(a,) RTin(ag/ag) = RTIn(ag)

AGY

Aaf=Py/PJ) = 1 3~ B(ag = Py/Pg) =1

where A and B denote components A and B, respectively, in solution. In
addition, aj and ag denote the activity of pure A and B respectively. Sum-
ming counter-clockwise,
YAGr.=0= AG;y + RT In(ag) - AGy - RT In(a,)
or
AGr= AG) +RT In(ag/a) [6-4]

The equilibrium constant follows from [6-4], as will be discussed in Chapter
8.

A review of activity and standard states of gas phases is presented in terms
of Systems I and II below. The results are summarized in Figures 6.1 and 6.2
and in Table 6.1.

System I: Gas Insoluble in Condensed Phase

Figure 6.1 characterizes an ideal gas, i, which is insoluble in any condensed
phase with which it is in contact. Gas i may be either pure or a component in
an ideal gas mixture. Since P° = 1 atm at any temperature (Section 5.1), the
activity of i from [6-2] is a; = P;/1 = P;. Using [54], a; = P;/1 = Y,P. Note that
if the total gas pressure in Figure 6.1 is Pr= 1 atm, then g; = P;=Y,.

Liquid or Solid:
Gas ilnsoluble

Figure 6.1 Activity of an ideal gas, 7, insoluble in the condensed phase. Gas i
is either pure or a component in an ideal gas mixture. P,.° =1 atm at any tem-
perature, thus a; = P;
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Example Problem 6-1

Sixty moles of an ideal gas mixture at 5 atmospheres pressure contains 15
moles of S(g) in contact with microcrystalline quartz, SiO,(s). If analysis of
the quartz reveals that it contains no sulphur impurities, calculate the activity

of Sz(g)

Solution
Referring to Table 6.1, Ps (p»= 1 atm, since S,(g) is insoluble in SiO,(s). Sub-
stituting [5-4] into [6- 2],
Bs,(5) = Py, /1 2tm = Y5, Pr = (15/60)3).
Hence,

G5, = L.23.
The reader should note that activity is dimensionless and that ag_ ) > 1.

System IT: Vapor Soluble in Condensed Phase

Figure 6.2(a) characterizes a vapor i, in equilibrium with pure condensed i
at temperature T. Since P P the activity of i in the vapor or condensed
state is given by ag; = P / P = 1 It then follows from [5-5] that AG; = RT
In(1) = 0.

Liquid or Solid: Liquid or Solid Solution:
Pure i Component iin Solution

a b

Figure 6.2 Activity of ideal gas component i. (a) Vapor i in equilibrium with
pure condensed i at temperature T. (b) Vapor i is soluble in and in equilibrium
with a liquid or solid solution which contains i in solution at temperature T.

Figure 6.2(b) characterizes a vapor, #, in equilibrium with component i dis-
solved in a condensed phase at temperature 7. At temperature T, vapor i will
exert a pressure less than it would exert if the condensed ghase were pure i,
hence P; < P . The activity of i in the vapor, a] =(P,/P; )", is equal to the
activity of i in the condensed state, hence a“”"’ ={h] P°) This equality
will be formally derived in Section 7.3.
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Table 6.1 Activity in Ideal Gas/Vapor-Condensed Phase Systems

Thermodynamic
System

Standard Activity
Pressure* Constant Temperature

System I
Gas i (pure
orina gas
mixture) is
insoluble in
condensed
phase.**

System IT
Vapor i in
equilibrium with

pure condensed i.

or
Vapor i in
a gas mixture, i
soluble in
liquid or
solid solution.

Pio =1 atm a;= P i
(Any Temp.)

Pio = Vapor a=1
Pressure of Pure i.

P? = Vapor a;=P/P°
Pressure of Pure i.

* The term vapor pressure refers to the partial pressure exerted by a gas com-
ponent i over a condensed phase containing that component. The term partial
pressure refers to a specific component in a gas mixture.

** For gas i soluble in condensed phases, see Example Problem 6-9.

Example Problem 6-2

Calculate the activity of zinc in a liquid copper-zinc alloy if the vapor pres-
sure of Zn(g) over the alloy is 1.28 atm at 1060°C. The vapor pressure of
Zn(g) over pure liquid zinc is 4 atm at 1060°C (Darken and Gurry, 1953, p.

412).

Solution

Referring to Table 6.1,

Hence,

Example Problem 6-3

! 0
20 = Praiey | Pan(ey-
a, =1.28 atm/4 atm = 0.32.

It may be necessary occasionally to convert concentration units to atomic

or mole fraction since these are the basic concentration units used in thermo-

dynamic expressions. Develop expressions for the conversion between w/o
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and a/o using dimensional consistency. Use m and M to designate mass and
molar mass respectively.

Solution
For a binary A-B solution,
(a/o)A = XA x 100 = [nA/(nA + nB)] x 100
= [ma/Ma/(ma/M + mg/Mp)] x 100.
or

/o), =(w/o| /M, )/(wio| / M +wio|s / Mg)x100  [6-5a]

Also,
(W/0)a = [mp/(mp + mp)] x 100
= [naMa/(naM + ngMp)] % 100.
Multiplying numerator and denominator by 100/(n, + ng) and incorporating

a/OIA’
(W/o)a =[(a/o|A xMA)/(a/o|A XMy +a/o|B xMB)]XIOO [6-5b]

6.3 SOLUTIONS AND PARTIAL MOLAR PROPERTIES

A solution is a combination of two or more components physically com-
bined so as to form a homogeneous mixture. Solution components are ele-
ments or compounds that constitute the ingredients of the solution. A homo-
geneous solution is a solid, liquid, or gas that exhibits the same physical and
chemical properties throughout. Barring chemical reactions, gas mixtures are
always homogeneous. In a binary system, the less abundant component in a
solution is referred to as the solute, while the more abundant component is
referred to as the solvent.

The concept of partial molar property* is best described graphically, using
volume. The definitions, based on the graphical representations below, apply
to all thermodynamic properties in homogeneous binary A-B systems and may
be extended to multicomponent systems. However, such systems are not, in
general, discussed in this book. As a result, the designation i for component i
will be replaced by an A or B in the binary A-B system. Partial molar proper-
ties are listed in SYMBOLS FOR MOLAR PROPERTIES: CHARACTER-
IZED BY VOLUME.

The relationship between the partial molar properties of binary solution
components A and B is illustrated in Figure 6.3. As shown, ideal and nonideal
solutions are characterized by linear and non-linear line segments respectively.
Consider a homogeneous material of composition W for which there is com-
plete solubility of A and B in the condensed state. Drawing a tangent line
through W, a point on the volume curve for a nonideal solution, and using
similar triangles as described by Darken and Gurry (1953, p. 240-241):

* The term partial molal property is also used, usually by chemists.
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Ve- Ve Vg
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Molar Volume D —
D' —+
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Figure 6.3 Graphical representation of partial molar properties characterized
by volume. A and B are completely soluble in all proportions in the con-
densed state.

a/Va=X,/10=a=X,Va (Triangles BKI and BAE)
b/Ve=Xg/1.0=b=XyVs (Triangles EWI and EDB)

The molar volume of the solution at W is
Vw =a+b=X,V, +X; [6-6]
¥, and ¥, located at the intersection of the tangent line at W with the verti-
cal axes at the ends of the figure, are the partial molar volumes of solution
components A and B respectively. The partial molar volume of a solution
component is the molar volume occupied by that component in solution at a
particular composition, W.
It can also be shown from Figure 6.3 that
S e YD av
V3 =BY+YD=V,, +XA-X—A-=VW +(1—XB)E'
where dV/dXg = YD/ X, is the slope of the curve at point W. The procedure
described above for determining V4 and Vg is called the method of tangen-
tial intercepts. This method can be used to obtain partial molar values of other
solution properties for any composition.
Consider solution component B. If Vé’ designates the molar volume of pure
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component B, the change in the partial molar volume of B due to mixing, V5",
is

=V-Y [6-7]
where B is in the same state of aggregation (liquid or solid). The magnitude
of Ij" isa measure of the state of non-ideality, as will be discussed later.
Note that if VB = VB ,then V3" = 0 and the addition of A atoms has no effect
on the molar volume occupled by B atoms in the solution. ¥, may alternately
be defined by

Vo =(V'/ong), ., [6-8]

where ¥ reflects the change in the total volume of a binary solution of arbi-
trary mass when an infinitely small amount of component B is added so that
the overall composition of the solution is not altered at constant temperature
and pressure. By analogy with [6-8], the following expressions apply for bi-
nary systems:

5A =(dG’/ ‘9"A)P,T,u, (6-9]
5 = (BS'/énA),,'T',,B [6-10]
Hy = OH [ dnp)p1m [6-11]

Darken and Gurry (1953, p. 242-243) discussed the validity of equations
analogous to [4-8] for partial molar properties at constant composition and
temperature. Using

AGp = ~TAS, [6-12]
and substituting G* = AG,, H = AHA and S = AS, into [6-12],
GA=HX-TSA [6-13]

It should be noted that nearly all of the relationships used to define pure sub-
stances can be used to define solution properties, since they are also thermo-
dynamic properties. Substituting G, = G, — Gy from [6-7] into [6-3],

G =RTIn(a,) [6-14]
Using the differential d(1/T) = —dT/T?, an equivalent form of [4-30] is used to
define the enthalpy term in [6-13]:

m_| AGRIT)]
H =| —2— 6-15
. [ o(/T) dpxy [ ]
Substituting [6-14] into [6-15],
_— Bln(aA)—
= R ———2=~ 6-1
A l: 3(1/T) I, [ 6]
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Using an equivalent form of [4-27], the entropy term in [6-13] is defined by

om_ [ 9GR _ o 9l'n(a,)
e ( or )P,x,\— R[ ar ]P-XA

which expanded gives

o dlin(a
Sa =—RIn(a,) - RT [—;T—")]”A (6-17]
Substituting [6-7] and its equivalent for A into [6-6], the total or integral
molar volume of mixing is
vr =X, V" + X, " [6-18]
By analogy, the following total molar mixing expressions also apply to binary
systems:

G™=X,G +X3Gy' [6-19]
H® =X 0"+ X0 [6-20]
S =X, 5T + X8 [6-21]
Substituting expressions for A and B from [6-14] into [6-19],
G™ = RT(X In(a,) + Xg In(ap)] [6-22]
Using an analogous form of [4-8] as in [6-12],
Gm=Hm-TS™ [6-23]

There are two aspects of solution behavior that should be considered. First,
it is common to identify behavior in terms of a specific component. As will be
seen, for example, solutions approach ideal behavior at high solvent concen-
trations as Xsqven: — 1.0. Second, enthalpy and entropy contributions expressed
by [6-13] and defined in general by [6-16] and [6-17] are evaluated sepa-
rately. The enthalpy contribution is associated with bond energy whereas the
entropy contnbunon is assoaated with structure, as discussed in Section 3.5.
Expressions for HA and SA are determined from solution models app_ropn-
ate for the materials system in question. For some systems, Ha and SA are
available directly from the hterature However, a trial and error procedure
may be useful to extract HA and SA from solubility data or phase diagrams.
Three solution models will now be introduced for use in this and subsequent
chapters. Note that the superscript “id” is used to designate an ideal solution

property.

6.4 SOLUTION MODELS
(1) Ideal Solution: Raoult’s Law
Ideal solutions are mixtures in which the bond energy between unlike
pairs of atoms is the average of bond energies between like pairs. The ideal
solution model is rarely observed in condensed systems over an entire com-
positional range, hence, an important function of this model is to serve as a
reference with which to compare nonideal behavior. These comparisons are
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normally expressed quantitatively as excess thermodynamic properties and
are discussed in Section 6.5.

Ideal or Raoultian solution behavior is stated in terms of Raoult’s law: the
vapor pressure exerted by a dissolved component A, F,, in a homogeneous
condensed solution is equal to the product of the atomic fraction of A in the
solution, X, and the vapor pressure of pure A, Pf , at the temperature of the
solution. Hence,

Pa= X,P} [6-24]
Substituting [6-24] into [6-2],
apn=Xu [6-25]
[6-25] is an alternate form of Raoult’s law and is illustrated for an ideal A-B
solution in Figure 6.4. The line labeled Ay, is a plot of a, versus X, and the
line labeled By, is a plot of ag versus Xp. Note that the slope of each line is
a/X = 1, in accordance with [6-25].

1.0 1.0

4
'S 4 &

0 0
A B
Xa=1 Xp=1
Xs=0 Xa=0

Figure 6.4 Ideal binary A-B solution defined according to Raoult’s law, a, =
X,. Solution components A and B are represented by the lines labeled Apgey
and By, respectively. The slopes of these lines are a,/X, = ap/Xg = 1.0.

Substituting [6-25] into [6-14],
G =RTIn(X,) [6-26]
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Substituting [6-25] into [6-16], 0
o _ ] I
" IT) lpx,
or
H=0 [6-27]
Substituting [6-25] into [6-17], 0
- dln
5" =—RIn(X, )~ RM
o  lpx,
or
S =-RIn(X,) [6-28]

Substituting expressions for both A and B from [6-26], [6-27], and [6-28] into
[6-19], [6-20], and [6-21] respectively,

G™ = RT[X, In(X,,) + Xg In(Xp)] [6-29]
Hm=0 [6-30]
§m = _R[X, In(X,) + X In(Xp)] [6-31]

A graphical concept of ideality is illustrated in Figure 6.3. If the binary A-
B solution of composition W shown were ideal, the curve E~W-D’would be
linear and would follow the trace of the tangent line through W, E-W-D. Note
that in such a case, V," = " =0.

Example Problem 6-4

Consider a solid solution of components A and B. Assume both compo-
nents behave ideally. Plot Gibbs partial molar free energy of mixing for both
components as well as the total molar free energy of mixing versus mole frac-
tion. Show maxima, minima, and slopes at critical points.

Solution

G and Gy
At X, = 1 and X = 0 and from [6-26]:
G_: =RT In(X,) =RT In(1) =0,

T :
= — = — = finite slope;
dX, X, X, 1

Gy =RT In(Xp) = RT In(0) = —o.

AtXB = 1 andXA-_-O:
GB =RTIn(1) =0,

T ;
= — = — = finite slope;
dXy dXy Xg 1
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G = RT In(0) = .,

The limiting slopes are approximated on Figure 6.5.

f am
&n GR=0
XA- } / Xa e— B x;= 1
Xe=0 /'-\7 Xa=0
—
~
\ Wi
Slope Finite .~
v
4 r
/ GR | _— G'R:-"“
4
/

Figure 6.5 G, and Gy versus X, and X, respectively, for a homogeneous
ideal binary A-B solution.

g™
At X, =1 and X = 0 and from [6-29]:
G™ = RT[XAIn(X,) + XgIn(Xg)] = RTT(1)In(1) + 0 In(0)] = 0 In(0).
Since 0:In(0) = 0-(- <) is indeterminate, L’ Hopital’s rule (Protter and Morrey,
1970, p. 632-635) is used to evaluate G™:

67 _InXy) _ fOX)
Lot ¥'=ar = Xa In(Xp)= 1/Xg  F(X)

where f{Xg) = In(Xg) and F(Xg) = 1/Xg. Then
limit f(XB) limit f(XB) limit (I/XB) _ ( X ) 0.
X5 —0 F(X )— XB—-)OF(X )"' XB_)O(—I/X;)_ X —»0 B
Consequently, at Xg = 0, G™ = 0:In(0) = 0. Taking the derivative of
[6-29],
acg™
A
AtXg=1land X, =0:
The calculations are analogous to those immediately above:
G™ =0 and dG™/dXg = —oo.
The limiting slopes are approximated on Figure 6.6.

= RT[In(X,) - In(Xp)] = RT(In(1) - In(0)] = e=.
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A A
+G" +G"
m_

6"=0] xy=0—[A X —> B
| R —~—~G"=0 XA___O

da” |- e '

dXa [Xa= 1 ' G |
! dXs| Xg= 1
[

Minimum: G™ = RT[.5In(.5) + .5In(.5)]
=-0.693 RT
Figure 6.6 G™ versus X, and X3 for a homogeneous ideal binary A-B solu-
tion.

(2) Nonideal Solutions
Nonideal solutions are mixtures in which the attraction between like pairs
of atoms is greater than the attraction between unlike pairs (positive deviation
from ideality) or less than the attraction between unlike pairs (negative devia-
tion from ideality). The arrangement of atoms may or may not be random and
substitutional. Non-ideality is introduced into [6-25] by inserting the thermo-
dynamic activity coefficient, 7, into the expression. Hence, [6-25] becomes
an = NXa [6-32]
For ideal solutions, ¥4 = 1.0. In general, 7, is a function of both temperature
and composition, hence

[aln(aA)/aT],,_xA #0.
For 7, = (constant),
[aln(aA)/aT],;.,XA =0.

(a) Henrian Solution Model:

The Henrian solution model applies to mixtures in which a solute, A, is at
low concentration, usually X, < 1 a/o. The distance between solute atoms at
such concentrations is large, hence thermodynamic properties are additive
and in direct proportion to solute concentration. At low solute concentrations,
solute behavior in a dilute solution is expressed by Henry's Law:

XA = kAPA [6-33]
where X, and P, have the usual meaning and k, is a temperature dependent
constant. Substituting [6-32] and [6-33] into [6-2],

YA = b (constant).

Pk
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Substituting into [6-32],
ap=bX, [6-34]
(b) Dilute Solution Model-Modified Henrian Solution:
The dilute solution model is essentially identical to the Henrian model
and applies to low concentration solutes. The difference relates to how the
non-ideality, 7,, is expressed. For example, substituting [6-34] into [6-14],

G =RT In(bX,).
Substituting this expression into [6-15] and [6-17],

e aRln(bXA) i
T i ]px -

S™ =—RIn(bX,)- RT[M]

PXa

=—R In(b) - R In(X,)

= (constant) — R In(X,).
From the above analysis, it is observed that non-ideality, according to Henry’s
law, is identified only with the entropy term since enthalpy is zero.
Kubaschewski and Alcock (1979, p. 47) comment on the increased accuracy
that is achieved when non-ideality is distributed between both enthalpy and
entropy terms. Parameters incorporating both terms define the dilute solution
model.

The enthalpy and entropy contributions of solute A in the dilute solution
model (personal communication, 1959, R. Schuhmann, Jr., Department of
Metallurgical Engineering, Purdue University, West Lafayette, Indiana) are
described by

H® = h (constant) [6-35]
Sy =5 (constant) - R In(X,) [6-36]
Substituting [6-35] and [6-36] into [6-13],
G =h-Tls—R In(Xy)]
=RTInX))+h-Ts [6-37]

Inserting [6-32] into [6-14] and comparing with [6-37] term by term, RT In(y,)
= h - Ts. Solving for 74,

h—Ts
—3 b - -
Ya exp( R ) [6-38]

where b is constant at constant temperature. The Henrian and modified Henrian
(dilute) solution models are summarized in Table 6.2.
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Table 6.2 Henrian and Modified Henrian (Dilute) Solution Models*

Solution Model Hy 5r
Henrian Solution 0 s —RIn(X,)
Dilute Solution h §—RIn(X,)
(Modified Henrian)

* h and s are temperature dependent constants but over small temperature
intervals may be assumed constant, as in Chapter 7.

Where specific interest is focused at a low concentration to one component, it
is convenient to introduce an alternative to the pure component standard state.
This alternative defines b such that b — 1.0 at infinite dilution. For the pur-
poses of this book, the pure component standard state will be used in all calcu-
lations.

(3) Regular Solution Model

Regular solutions are comprised of components at intermediate concen-
trations. Interactions between like and unlike atoms vary with solution com-
position, hence, ¥; is variable with X;. An example of a regular solution is a
binary A-B substitutional solid solution with random arrangement of A and B
atoms on A and B sites.

The quasi-chemical theory (Swalin, 1964, p. 109-116) relates chemical ef-
fects to energetics rather than mechanical or valence effects and demonstrates
that the enthalpy associated with a regular solution is nonideal. Vibrational
effects are unchanged during the solution process, hence, entropy is ideal.
The nonideal partial molar enthalpy of mixing for a binary A-B solution com-
ponent A is

H =Q(1-X,)? [6-39]
where
Q = zNp,[hag — (haa + hpB)/2] [6-40]
z is the number of bonds (coordination number) per atom and N,y is Avogadro’s
number. The enthalpies per A-A, B-B, and A-B bond are designated hpa, hgg,
and h,p respectively. Q is constant and independent of temperature. Substi-
tuting [6-39] into [6-20],
H™ = QX5(1 - X4)? + QXp(1 - Xp)%
Since (1 -X,) = Xg and (1 - Xg) = X\, _
H™= QX, X2 + QX X3
or
H™ = QX Xg [6-41]
Since a regular solution is ideal with respect to entropy,

S =-R In(X,) [6-42]
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Substituting [6-39] and [6-42] into [6-13],
G =Q(1 -Xa)?+ RT In(X,) [6-43]
Consider now a plot of H™ versus composition according to [6-41] and
shown in Figure 6.7. If Q > 0, H™ > 0, mixing is endothermic, the solution
exhibits a positive deviation from ideality, and like pairs of atoms attract. If Q
=0, the solution is ideal. If Q < 0, H™ < 0, mixing is exothermic, the solution
exhibits a negative deviation from ideality, and unlike pairs of atoms attract.
For further reading refer to DeHoff (1993, p. 196-203) and Gaskell (1981, p.
366-373).

E

H"
I Regular Solution: H™ 5 o
Xa=1 Ideal Solution: H" =0

non
- O

Xeg=0

Regular Solution: H™ <©

0 Xog —————P 1.0

Figure 6.7 Positive (H™ > 0) and negative (H™ < 0) departures from ideality
(H™ = 0) for ideal and regular binary A-B solutions. Note that positive and
negative deviations apply in general to all nonideal solutions.

6.5 EXCESS THERMODYNAMIC PROPERTIES AND
ALTERNATE SOLUTION MODELS

The difference between a nonideal and ideal thermodynamic property is
defined as an excess of that property. Excess properties, sometimes referred to
as residuals, are point functions and can be treated as exact differentials. There
are occasions in which excess properties are easier to analyze mathematically
than the properties themselves. Superscript “XS” is used to designate an ex-
cess property. Hence, for component A,

GXS =G -G [6-44]
XS = gr - g [6-45]
ZXS _gp g [6-46]
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where superscript “id” refers to the ideal solution. Using an analogous form of
[4-8] as in [6-12],

G =HX -1 [6-47]
Substituting [6-32] and [6-25] into [6-44],

G,.*=RT In(y) + RT In(Xp) - RT In(X,)
or
G5=RTIn(n) [6-48]

Additional relationships can now be developed for each of the solution mod-
els discussed.

(1) Ideal Solution (3, = 1)
From [6-26] and [6-44] or from [6-48],
GXS=RT In(X,) - RT In(X,) = RT In(1) = 0.
Substituting [6-27] into [6-45] and [6-28] into [6-46],
BS=0;
=0
In general, any excess thermodynamic property for a solution component ex-
hibiting ideal behavior is zero.

(2) Dilute Solution (7, is constant # 1)
Substituting [6-26] and [6-37] into [6-44] and comparing the result with
[6-47],
AX=p,
S =

(3) Regular Solution (¥, is variable)
Substituting [6-26], [6-43], and [6-48] into [6-44],
GXS=Q(1 - X5)? + RT In(X4) - RT In(X,) = Q(1 - XA)2 = RT In(7);
7a = exp[Q(1 - Xo)/RT] [6-49]
Note that if Q is positive, ¥, > 1 and like pairs of atoms attract. If € is nega-
tive, Ys < 1 and unlike pairs attract.

(4) Alternate Solution Models

In this book, ideal, dilute, and regular solution models are applied analyti-
cally. Variations in these models incorporate excess entropy. Two alternate
models are introduced here but are not used in any problem solutions.

(a) Athermal Solution:

These solutions are characterized by large size differences between com-
ponent atoms. Solutions containing Fe and Na approach this type of behavior,
as noted by Johnson (1964). Internal energy in athermal solutions is governed
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almost entirely by excess entropy. Hence, the following expressions define
enthalpy and entropy contributions:
A =0
S8 = 5 (constant)
or
SX8=8(1-X,)
where & is constant.
Combining [6-13], [6-45], and [6-46] and substituting for 5",

G = TIR In(X,) - &1 - XA)%] [6-50]

(b) Subregular Solutions:

Internal energy is governed by both size and chemical bond effects, hence
characteristics of both athermal and regular solutions are incorporated into
the model. The following expressions define enthalpy and entropy contribu-
tions where Q and o are constants. Substituting as above,

HX=Q(1 -X,)%
SXS= a1 - Xp)2.
The Gibbs partial molar free energy of mixing of A becomes
G =Q(1 - Xa)2- Tlax1 = XA - R In(X,)] [6-51]

6.6 TL ANALYSIS OF SOLUTIONS IN HETEROGENEOUS
REACTIONS
Example Problem 6-5
The following enthalpy data are given for Au-Cu alloys at a temperature of
500°C (Swalin, 1964, p. 329). H™ is in cal/mol.

X | 01 [ 02 ] 03] 04 | 05] 06 |07 | 08] 09
H™ | -355 | 655 | 9101 =11201-12801-12401-1130 | —860 | —460

(a) Examine the data and identify the solution model most appropriate for
this system.

Solution

The solution is not ideal in the range of compositions given since H™ # 0.
Because of the wide range of compositions for X¢,, the data is best analyzed
using the regular solution model.

(b) Find expressions for H™ and HG,.
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Solution
Using [6-41], values of Q are computed at each composition. The results are
recorded in the table below:

Xe, |01 | 0203 | 04 [05]06 |07 |08 ]| 09
Xeo |09 |08 |07 |06 |05 ][04 |03 02 01
XooXaa 009 [ 0.16 [0.21 | 024 | 025|024 | 021 |0.16 | 0.09

H™ -355 | 655 [-910 |-1120 [-1280}-1240 |-1130| 860 | —460
Q —3944 1-4094 1-4333 | 4667 1-51201-51671-5381 |-5375 | -5111

Rigorous application of [6-41] would require that Q remain constant. A ran-
dom variation would be acceptable for engineering applications. Noting that
Q increases to X, = 0.7 and then decreases, assume an average Q = —4800
cal/mol x (4.184 J/cal) = -20,083 J/mol. Hence, from [6-41],
H™ = -4800 XX a, cal/mol
=-20,083X.,X,, J/molL

From [6-39],
HE =-4800(1 - Xc,)? cal/mol
=-20,083(1 - X, )* J/mol.

(c) Determine G™ at X, = 0.45.

Solution
Using [641],
H™=-20,083 XX, =-20,083 x 0.45 x 0.55
=-4971 J/mol.
Substituting [6-42] for both components into [6-21],
8§™ = —R[XAIn(X,) + X5In(Xg)] [6-52]

S™ = -8.3144[0.45 In(0.45) + 0.55 In(0.55)] = 5.72 J/(mol K).
G™=-4971 - (773)(5.72) = G™ = -9393 J/mol.

(d) Determine the activity coefficient of Cu, ¥, at Xq, = 0.45.
Solution
From [6-49],

Yeu = €xp[-20,083(1 - 0.45)%/8.3144 X 773] = %, = 0.389.
(e) Find the partial pressure of Cu, Pq,, at X, = 0.45.
Solution

From [6-2] and [6-32],
acu = P/ Poy= YouXou = Pou = P, Yoo
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Hence,
P, =0.389x0.45P%, =0.175P3,.
From Appendlx A, Table A5,
Log; ol Pc..(.) (mm Hg)] = (—17 770/773) — 0.86l0g;(773) + 12.29
=-13.182= P2, = 6.58 x 10 mm Hg.

Therefore,

Pc,=0.175% 6.58 x 1014

=1.15x10""* mmHg,

(f) Calculate the F, () In equilibrium with the Cu-Au alloy for X¢, = 0.45 at
500°C. Assume ac,, o,y = 1.0 [pure cuprite, Cuy0(s)].

Solution
(1) Set Up. A horizontal line above a condensed phase is used to indicate that

the component is in solution.

2Cus) +  (1/20.(g) AGr 3= Cu,0(s)
2AG, (12)AG, AG,

0
2Cus) + (122049 4G = Cu,0(s)

(2) Sum.
SAGr =0= AGY, + AG, — AGy73 - (1/2)AG, — 2AGs,

(3) Substitute.

AG, =RT In(1) = 0 and AG73 = 0 at equilibrium.

From Table A 4,

AG% =-169,470 — 16.40T log(T) + 123.44(T) from 298 to 1356 K =
AGy53 =-169,470 — 16.40(773)log(773) + 123.44(773)

=-110,665 J/mol.
(12)AG, = ( 1/2)RT In(Fy, ).
2AG, = 2GCu = 2RT ln(aCu) 2(8.3144)(773)In(0.389 x 0.45)
=-22,401 J/mol.
Substituting the above data into YAGy =0,
=-110,665 - (1/2)RT In(F,, ) - (-22,401).

(4) Solve.
(1/2)RT In(Fy, ) =-110,665 + 22,401 = —88,264.
In(R,,) = 2(—88,264)/(8 3144 x 773) =
Fo,p =L 18x107*2
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Example Problem 6-6
(a) Will a gas mixture containing 97 v/o H,O vapor and 3 v/o Hy(g) deoxidize
nickel oxide over pure nickel at 1000 K? Assume P = 1 atm (Darken and

Gurry, 1953, p. 513).

Solution
(1) Set Up.
) AGig00 .
Ni(s) + H20(g) 3 NiO(s) - Ha(g)
AG, AG, AG, AG,
. AGlog .
Ni(s) + H,0(g) = NiO(s) + Ha(g)
(2) Sum.

TAGr = 0= AGYy, + AG, + AG,— AG g0 — AG3 — AG,.

(3) Substitute. From [4 9],

Acﬁm = ZnAGlooo(Products) 3 nAGPy, (Reactants).
AG’o°°° v AGwoo NiO(s) ™~ AGwoo H,0(g)" From Table A4,
AG 0 =244 ,580 + 98, 54(1000) [—246 460 + 54.82(1000)]

= 45,600 J/mol.
AGy = RT In(Py,) = 8.3144(1000)In (B, ) = 8314.4 In(By, ).
From [5-4], Py, = Yy Pr= 0.03(1 atm) = 0.03 atm.
Hence, AG, = 8314.4 [n(0.03).
AG,=RT In(1) =0.
AGy = RT In(PBy, o) = 8.3144(1000)In (Py,0) = 8314.4In (Py,0).
From [5-4], By,o =0.97(1 atm) = 0.97 atm. Hence,
AG,=8314.4 ln(O 97).
AG, = Gi= 0 (pure solid).
Substituting the above data into YAGyy =0,
0 =45,600 + 8314.4In(0.03) — AG1 00 — 8314.41n(0.97).

(4) Solve.
AG 00 = 45,600 + 8314.4 In(0.03/0.97) = 16,698 J/mol.

Since AGy00 > 0, NiO(s) will tend to deoxidize.

Figure 6.8, a simplified portion of Figure E.2, can be used to confirm that
the reaction will be deoxidizing. From the nomograph, Py, /Py o =~ 102 =
0.02. Since the actual ratio By, /Fy,o = 0.03/0.97 = 0.031, the reaction will
tend to shift from right to left.
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Figure 6.8 Ellingham diagram for Ni oxidation. AG? versus T (°C) is shown
by the solid line. M.P. and B.P. represent the melting and boiling points of
Ni(s) respectively. The dashed line, drawn from point H on the vertical line at
the left side of the diagram through the 1000°C point to the vertical scale at
the right, graphically determines the Fy, /Py, ratio. The resultis By, /By o
=102

(b) An alloy contains 20 a/o Ni and 80 a/o Au in solid solution at 1000 K. This
alloy reacts with water vapor to form NiO(s). Experimental measurement
indicates the reaction reaches equilibrium when the H,O-H, mixture con
tains 0.35 v/o H,. Find the activity coefficient of Ni in the alloy. Assume
NiO(s) is pure oxide. How does alloying affect the result obtained in part

(a)?

Solution
(1) Set Up.
= AGio00 .
Ni(s) + H,0(g) = NiQ(s) + Ha(g)
AG, AG;, AG, AG,
) AG 00 )
Ni(s) + H,O(g) > NiO(s) + Ha(g)
(2) Sum.

SAGr =0= AGYy, + AG; + AG, — AGy00— AG3 — AG,.
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(3) Substitute.
AGyy, = 45,600 J/mol, from part (a) above.
AG, = RT In(Py, ) = 8.3144(1000) In(0.0035).
AG, = RT In(1) = AG, xo (equilibrium) = 0.
AG3 =RT In(Py, o) = 8.3144(1000) In(1 - 0.0035).
AG, = Gi = RT In(ayy) = 8.3144(1000)In(ayy).

Substituting the above data into XAGyy, =0,
0 = 45,600 + 8314.4 In(0.0035) — 8314.4 In(0.9965) — 8314.4 In(ayy).

(4) Solve.
g = 0.846 = %X = % = 0.846/0.2 = 4.23.
If the effect of alloying is incorporated into part (a),
AG, = Gxi = 8.3144(1000)In(0.846).
Therefore,
SAG, = 0 = 45,600 + 8314.41n(0.03/0.97) + 1390 — AG, 000
or
AG 100 = 18,088 J/mol.
The tendency to deoxidize is increased when Ni is in solid solution with
Au since AG g increases.

Example Problem 6-7

Repeat Example Problem 5-2 for the case where Cr forms a 15 a/o solid
solution with a metal, M. Assume Cr is more readily oxidized than M and that
Cr,0, is insoluble in solution. Assume an ideal Cr-M solid solution. (Darken

and Gurry, 1953, p. 513).
Solution

(1) Set Up.

@B)Cris)  + 2H20(g)—LG‘2-"—> (23)Cry04(s)  +  2H,(0)

(4/3)AG, 2AG, (213)AG, 2AG,

0
(4/3)Cr(s)  + 2H20(g)_ﬁ&>(2/3)0r203(s) +  2Hy(9)

(2) Sum.
YAGL=0= AGI"273 + 2AG, + (213)AG, — AG 773 — 2AG;3 - (4/3)AG,.
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(3) Substitute.
AGYy,, =-173,039 J, from Example Problem 5-2.
AG 23 = 0 at equilibrium.
2AG, =2R(1273)In(Fy, ) and 2AG; = 2R(1273)In (P, ) -
2/3AG, = 2/3RT ln(l) ‘0.
4/3AG,=4/3 Ge = =4/3R(1273)In(Xc,) = 4/3R(1273)In(0.15).
Substituting the above data intoYAG; = 0,

0=-173,039 + 2(8.3144)(1273)In (P, ) - 2(8.3144)(1273)In (B o) -
4/3(8.3144)(1273)In(0.15).

(4) Solve.
Pyl Py = 1002

Comparing this result with that of Example Problem 5-2 for which A, /By
= 3.55 x 103, alloying reduces the ratio of partial pressures by a factor of
nearly 3.5.

6.7 THE GIBBS-DUHEM EQUATION
For a binary A-B solution at constant pressure and temperature,
G’ =fins.ng)
where n, and ng are the number of moles of components A and B respec-
tively. Applying the chain rule and [6-9],

aG’ aG’
dG’ = dn dn,
(‘}‘A ] “ (3"3 )p T.n ’

dG’=G,dn, +Ggdng [6-53]
Replacing V in [6-6] with G and multiplying through by (n4 + ng),
G(HA + IIB) = XA(nA + nB) G-A + XB(nA & nB) EB

or

or
G'= (nAnTB)(nA * 15008, # Eﬁf@("" +n5)Cy.

Hence,

G’ =n,G, +nyGy.
Taking the total derivative of this expression,

dG’=n,dG, +G,dn, +ngdGy + Gydny [6-54]

Equating [6-53] and [6-54],

n,dG, +ngdGy =0 [6-55]
Dividing [6-55] by (ns + ng),

X,dG, +XydGy =0 [6-56]
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Similarly,
X, df, + XgdHy =0 [6-57]
and
X,dS, + XgdSy =0 (6-58]
In general, for a solution containing any number of components at constant
pressure and temperature,
IX,d6; =0 [6-59]
or
Zn,dB; =0 [6-60]
where 5, is any partial molar thermodynamic property of component i. Both
[6-59] and [6-60] are equivalent forms of the Gibbs-Duhem equation.

Example Problem 6-8

If the solute in a binary A-B condensed solution obeys Henry’s law, show
that the solvent obeys Raoult’s law. Let component A be the solvent and B be
the solute. Sketch the result for Ayyents Bsotute AN Agolutes Bsolvent.

Solution
Substituting the differential form of [6-14], d@’[’ = RT din(a,) and d('}'—l;" =
RT din(ag), into [6-56] and dividing through by RT,

X, din(a,) + Xg din(ag) =0 [6-61]
Substituting [6-34] (component B) into [6-61] and solving for a,,

din(ag) = — 2B din(bXy) = —;—B[d In(b) + d In(Xp)]
A

XA
XB
= ——=dIn(Xg).
X, (Xp)
Substituting X, = (1 — Xg) and integrating over limits that yield In(a,) di-
rectly,
o " xydIn(Xy)
_[d]n(aA)=__[ Apdiay)
1-Xg
1 0
or
In(a,) - In(1) = In(1 — Xg) — In(1) = In(a,) = In(X,).
Therefore,

a, =X, = Aisideal

Figure 6.9 is a plot of activity versus composition for both components. As
illustrated in the figure, both Raoultian and Henrian behavior are approached
at high concentration and dilution respectively. In this sense, Raoult’s and
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Henry’s law are limiting laws (Lupis, 1983, p. 158-163). The activity (slope)
of each line in mid-range compositions is variable and compositionally de-
pendent. The regular solution model is often applicable in this range.

|e— Nonideal —l
| y=F (Xa,Xs) |
1.0 | I 1.0

| |
Ideal - Ideal
aa=Xa / I \ apg= X3
Y8 = 1.0 | | | T8 = 1.0

| |

aAT | | | Tas
| |
7 4
| Ky 44% 1
| I |
g | 1"”’0@,(""'
|
|
A N il B
Henrian Henrian
Xa=1 Siope=1s=22  Slope = ya= 22 =1
Xa= 0 ope =Ye=y_ ope = Ya= 3 Xa=0
=Constant # 1 = Constant # 1

Figure 6.9 Nonideal binary solutions of A and B are represented by the line
segments labeled Ayonigea A1d Byonigeal- SOlutes A and B exhibit Henrian be-
havior at low concentrations, while solvents A and B exhibit ideal behavior at
high concentrations. At intermediate concentrations, A and B exhibit nonideal
solution behavior.

6.8 CHEMICAL POTENTIAL
Recalling the four Maxwell equations for closed systems presented in Chapter
Four, total thermodynamic properties for each equation can be expressed as
follows:

U'=U'(S"V) [3-6]
H’=H'(S’,P) 3-71
G'=G'(T,P) [4-14]
A’=ATV") [4-20]

Rewriting these equations for an open binary A-B system,
U' = U'(S',V',nA,nB)
H’ =H'(S",P,np,np)
G’ =G'(T,P,npnp)
A’ =A'(T,V',np.np).
Using the chain rule to expand each expression for an open system,
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au') (auj , (au} (3U’J
dU'=|—| dS’ +|—=| av dn, +|—| dny [6-62]
(as V’;IIA.’IB aV S’ WMyl &IA S',V',Aun aﬂB s’ :B

WVin,

oH’ oH’ oH’ oH
bl 20 JSF e — 1 d dn 6-63
& (35')"."»»:( oP )S’-:iﬁn:[ah) o [&‘B)s B

§’,P,ng \P,n,
dG’=(——) dar +(—) dP +[ )dn +(—) dn [6-64]
OT )Py \ OP )Tinying \Onp 1,p,:n ong r,P,l:A

oA’ oA’ oA’ aA’
dA’'=|—| dI av’ + dn dn =
(W)V'-RA-M+(3V')T~A'- (&A]TV':. (a"n)rv?.‘ Lo

By definition, y,, the chemical potential of component A is

a”A §V'ng a"A 5’,P,ng a"A T,V',ng a”A T,P,ng

Since pressure and temperature are simplest to control during an experiment,
the most useful of these expressions is

o, T,P,ny

Substituting [6-9] into [6-66],

M

pa= Ga [6-67]
Equations [6-62] through [6-65] may be expressed in alternate form by incor-
porating the definitions of chemical potential into the extensive forms of
[3-61, [3-71, [4-14], and [4-20]:

dU’ =TdS’ — PdV’ + updny + Ugdng [6-68]

dH’ = TdS’ + V'dP + ladna + Ugdng [6-69]

dG’ = V’dP - §'dT + ipdny + Updng [6-70]

dA’ = -S'dT — PdV’ + uxdny + lgdng [6-71]
Example Problem 6-9

Gases dissolve in metals monatomically and normally in dilute concentra-
tions. Using TL analysis, derive Sievert’s law relating the partial pressure of
hydrogen in a gas phase to the concentration of hydrogen dissolved in a coex-
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isting condensed phase at constant temperature. Assume the gas is ideal.
Sievert’s law is a special case of Henry’s law (Kubaschewski and Alcock,

1979, p. 47).

Solution.
(1) Set Up.
AGs =
(1/2)H, (Pyo) — H(a,=bX,=C,) (State?)
12 AG, [}
0 AG% T 0
(1/2)H, (P = 1) = H(a, =bX}=C}) (State1)

X3 is the atomic fraction of H at B§, =1atm. AG,and AG, are the molar
and standard molar Gibbs free energies of solution, respectively, relative to
gaseous hydrogen.

(2) Sum. ’
TAGmL=0= AG, + Gy —AG, - 5AG,.

(3) Substitute.
AG® = AH? -TAS?.

Gii = RTIn(Cy /CY).
AG, = 0 (equilibrium).

.;_AGF (1/2)RT In(Py,).

Substituting into YAGyy =0,
0= AH? —TAS? + RTIn(Cy / Cgy) - (1/2)RT In(Py, ).

(4) Solve.
RTIn(Cy /CY) = —AH? +TAS + RT In(R?)

AH?  AS?

0 1247 s s

In[(Cy / Cy) (P, )=~ e

-AH?  AS?

Cy =Cg[ex;{ RT' +T']:| *}f [6-72a)
Ci=kPY [6-72b]
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where Cy is the concentration of H in solution, Cy is the concentration at
P}?z = 1 atm, and AH,° and AS,° are the enthalpy and entropy of solution
relative to gaseous hydrogen. In [6-72b], Sievert’s law, Cy; has arbitrary units
consistent with constant k.

6.9 DISCUSSION QUESTIONS

(6.1) A component in a condensed solution is in equilibrium with its vapor.
How is the Gibbs free energy change of the condensed component
related to the vapor? What assumption is made about the vapor?

(6.2) At what relative solution concentrations (low, intermediate, or high)
will a solution component exhibit:

(a) Ideal behavior?
(b) Dilute (Henrian) behavior?
(c) Regular behavior?

(6.3) Using a plot of H™ vs. X, show that H}* = 0 for a solution ideal with
respect to A over the entire composition from X, =0to X, = 1.0.

(6.4) Referring to (6.3), describe how to determine that component B is also
ideal over the entire composition from Xg = 0 to X = 1.0.

(6.5) If Gi' - —s0asX; — 0, what can be said about the stability of compo-
nent i in solution as X; — 0? What does this imply about purificaticn
processes?

(6.6) Comment on the thermodynamic validity of the following expressions
for a binary alloy:

(@) 0= X,G, + X0y
where o'is stress and G, and O are partial stresses.
What restriction is placed on o?

®) C,=X,C, +X5C,
where C; is constant pressure heat capacity and CPA and CPB are
partial heat capacities at constant pressure.

©) a=X,a, + Xzoy
where a is the thermal expansion coefficient and @, and &y are
partial thermal expansion coefficients.

(6.7) Theexpression G, only holds if the standard state is in the same state
of aggregation as the solution. Explain.

(6.8) Excess Gibbs free energsy of solution for a binary alloy is
G*s= X, G +X,Gy" .

Express GXS for a solution that is subregular with respect
to both A and B.

(6.9) Show that p, —pb =G
(6.10) Is H, = u, ? Explain.
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6.10 EXERCISE PROBLEMS

[6.1] Derive an expression equivalent to Sievert’s law, [6-72b], for solution

of hydrogen gas in an aqueous solution. Assume Henry’s law.
Ans: Cy, =kFy,.

[6.2] Sievert’s constant for solution of oxygen in liquid silver is k = 193.6
cm3-atm=05/100 gm Ag at 1075°C (Darken and Gurry, 1953, p. 513).
Calculate the solubility of Ag at the same temperature if F,, =50 mm
Hg.

Ans: Cpg=49.7 cm?/100 gm Ag.

[6.3] Referring to Example Problem 6-5, show from the Gibbs-Duhem equa-
tion that A, =-20,083(1 — X,)? J/mol.

[6.4] Calculate the composition (a/0) of a binary A-B alloy in equilibrium
with oxides A,0 and BO at 627°C. Given AGXZ(): —-15,000 cal/mol
and AGJ,= 25,000 cal/mol. Assume solvent A is ideal. Solute B is
Henrian with 9 = constant = 1.15. The metallic phases are completely
soluble in each other, whereas the oxides are insoluble.

Ans: 99.7 ao A; 0.3 a/o B.

[6.5] For the binary liquid alloy system Cu-Zn, the zinc vapor pressure at
1060°C is given as a function of composition in the following par-
tially completed table (Darken and Gurry, 1953, p. 512):

Xz, 0.05 0.10 | 0.15 020 | 0.30 045 1.0

Pz, (atm) | 0.0289 |0.0592 | 0.1184 | 0.2368 | 0.6000 | 1.2763| 4.000*

G7n

Ya

oy,

gzn:xs

azr:,id

Qz,

* Value is high compared to data in Appendix A, Table A.5.

[6.6]

(a) Complete the table (use metric units).
(b) Does the system obey the ideal, Henrian, or regular solution
model?
Ans: Ideal behavior with respect to zinc as Xz, — 1, regular for
approximately 0.05 < Xz, < 0.30, and Henrian for approxi-
mately X, < 0.05.
One mole of solid A at 1200°C is added to a large quantity of a liquid
solution comprised of components A and B (X, = 0.8). The liquid
solution is also at 1200°C. If A and B form ideal solutions, calculate
the Gibbs free energy change resulting from the addition of solid A to
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[6.7]

[6.8]

[6.9]

[6.10]

[6.11]

[6.12]

[6.13]
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the mixture. Assume C3' (liquid) = C2 (solid) and CA is independent
of temperature. AH/ = 24,000 J/mol at 1800°C.
Ans: G — Gy* =4210 J/mol.
The molar heat of formation of liquid brass according to the reaction
(1 - X)Cu + XZn — CuZn is given by H™ = -7100X(1 - X) cal/mol
(Upadhyaya and Dube, 1977, p. 139). Determine the expressions re-
lating the partial molar heats of mixing of copper and zinc in liquid
brass to the alloy composition.
Ans: HE =-7100(1 - X¢,)% Hz, =-7100(1 - Xz,)%
The solubility limit of component A in B is 1.5 w/o at 760°C. If an
alloy contains 0.5 w/o A, calculate the activity of A. Assume Henrian
solution behavior in the composition range.
Ans: ap =0.33.
Antimony is removed from lead during the refining process by selec-
tive oxidation (Darken and Gurry, 1953, p. 513). Estimate the Sb con-
tent obtained for air agitation of the bath at 1173 K. State assumptions
and use the following data: AGf,= —417,600 J/mol Sb,0,
and AG, = —395,000 J/mol Sb,0; (Wicks and Block, 1963, p. 13).
Ans: Applying two methods: Method 1 — antimony (ppb) =2
and Method 2 — (more realistic) Sb (ppm) = 8000.
Show for a regular binary solution that
_RT In(y;)
[1-xY’
Show that if a solution component i exhibits ideal behavior at constant
temperature, V7= 0.
During low temperature-high pressure metamorphism, the albite com-
ponent in the mineral plagioclase breaks down to form the mineral
quartz and jadeite, a component in the mineral omphacite. Quartz oc-
curs as a separate phase during metamorphism, hence ag;0, = 1. Re-
ferring to Exercise Problem [4.22]:
(a) Calculate AGr as a function of temperature, activity of albite, a,p,
in plagioclase, and activity of jadeite, a4, in omphacite.
Ans: AGp (J/mol) = 53.21 x 103 — 2000.4T + 238.217TIn(T) -
70.349 x 10-3T2 + 3.791 X 10-5T3 + 17.478 x 103703 + 2460.4
x 103T-! + RT In(ayg/apy)-
(b) Assuming ideal mixing, determine AGr as a function of tempera-
ture, XAb! and XJd-
Ans: AGy (3/mol) = 53.21 x 103 — 200047 + 238.21TIn(T) —
70.349 x 10-3T2 + 3.791 x 10-5T3 + 17.478 x 103T°5 + 2460.4
x 103T-! + RT ln(XJd/XAb).
Plagioclase feldspar, one of the most common rock forming minerals,
exhibits complete solid solution between the pure end members albite
(Ab), NaAlSi;Oq, and anorthite (An), CaALSi;Os. Solid solution min-
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eral compositions are usually given in abbreviated form, such as
AbypAng,, which denotes a plagioclase of composition 40 w/o albite
and 60 w/o anorthite. Show that the partial pressure of anorthite over a
homogeneous liquid solution of Ab,pAng, at 1350°C is:

-AGY,. —383R
Py 2200

where AGy,, is the standard Gibbs free energy change at 1623 K for
the phase transformation An(/) — An(g). The molecular weights of
albite and anorthite are 262.23 and 278.21 respectively. State assump-
tions.
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