INTRODUCTION

1.1 THE SCIENCE OF THERMODYNAMICS

Thermodynamics is concerned with the study of energy transformations
and the relationship of these transformations to materials properties. These
relationships are derived from thermodynamic laws, which are mathematical
expressions assumed to hold true for all cases in which the specified condi-
tions of the law are met experimentally. Because its laws are independent of
atomic and molecular theory, classical thermodynamics can be thought of as a
macroscopic science.

The purpose of thermodynamics is to predict changes in the properties of
some finite portion of space set aside for investigation and to determine the
influence, if any, on this portion of space by its surroundings. In the engi-
neering and physical sciences, thermodynamics is used to assess efficiency
and predict the occurrence of chemical and physical processes. Unfortunately,
thermodynamics generally cannot be used to determine the rate at which a
reaction takes place—i.e., it tells what occurs at equilibrium, but not when.

1.2 SYSTEMS, SURROUNDINGS, AND PHASES

Thermodynamic analysis starts with identification of the system under study
and the location of its boundaries relative to the surroundings. For example,
materials systems are composed of phases in a finite portion of space set aside
for investigation. A phase is a physically distinct, mechanically separable por-
tion of a system, e.g., ice in a mixture of ice and water or the mineral olivine in
the olivine basaltic rocks of the Hawaiian Islands. Systems composed of one
phase are said 1o be homogeneous, while systems composed of two or more
phases are said to be heterogeneous. The boundaries of a system may be real,
such as the walls of a container holding a metal charge, or they may be purely
imaginary. Everything outside the system, which either directly influences or
has no influence at all on its behavior, constitutes the surroundings. If a sys-
tem is unaffected by its surroundings it is said to be isolated. An isolated
system exchanges neither energy nor mass with its surroundings. A closed
system exchanges only energy with its surroundings whereas an open system
exchanges both energy and mass with its surroundings.

1.3 MACROSCOPIC STATE OF A SYSTEM

Experimental measurement of thermodynamic properties provides the ba-
sis for the complete description of the macroscopic state of a system. Hence,
the empirical approach is the primary focus of this book. The number of mac-
roscopic coordinates or variables needed to define a system depends upon
whether the system is open or closed and upon the identity of the boundary
between the system and the surroundings. For example, the mineral phases
comprising a rock at great depth in the earth’s crust may react to form other
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minerals upon exhumation to the surface. If the exhumed rock is considered
the system, the pressure, temperature, and composition recorded under ex-
humed conditions may be adequate to describe the state of the system at or
near the surface. However, if the focus of attention is reaction conditions at
some specific point in time at great depth, then an entirely different set of
pressure, temperature, and composition data is required. The macroscopic state
of a systemrefers to the experimental coordinates needed to define the system
in such a manner that it could be duplicated. If the coordinates change in any
way, the system is said to undergo a change in state. For example, the state of
a closed system can be defined by any two of three macroscopic variables:
namely, pressure, volume, and temperature. Hence, if one of these is selected
as the dependent variable, the other two become the independent variables. If
the system undergoes a change in one or more independent variables, it changes
state. Microscopic states and their connection to macrostates, briefly discussed
in Chapter 3, are the subject matter of statistical thermodynamics.

1.4 EQUILIBRIUM

A system is said to be in a state of equilibrium when there is no perceptible
change in macroscopic coordinates with time. Such systems appear to be at
rest. A system in chemical equilibrium appears to be at rest but actually in-
volves a balance of reactions opposing one another at equal rates. The equilib-
rium between a gas and a liquid at the boiling point of the liquid and between
a solute and its undissolved supersaturated component are examples of chemical
equilibrium.

In addition to chemical equilibrium, systems may exhibit mechanical and
thermal equilibrium. A system is said to be in a state of mechanical equilib-
rium when no unbalanced force exists between the internal parts of the system
as well as between the system and its surroundings. Thermal equilibrium oc-
curs when a system and its surroundings are at the same temperature and no
net heat transfer occurs across the boundary.

Any system in chemical, mechanical, and thermal equilibrium is said to be
in a state of thermodynamic equilibrium. Such systems can be described in
terms of time-independent macroscopic coordinates. It should be noted that a
system at steady state can be described in terms of time-independent macro-
scopic coordinates, but it is not at equilibrium because the coordinates change
if the surroundings are modified. Some equilibrium states can be predicted
from everyday observations. For example, it is intuitively known that when a
bar of hot metal is quenched in water, the metal and the water reach thermal
equilibrium at an intermediate temperature. In more complex systems, the
equilibrium state is not predictable from observation, and analytic criteria for
equilibrium must be established. Establishing such criteria is important, for
example, in order to determine the direction in which a chemical reaction will
spontaneously proceed at some instant in time when the macroscopic coordi-
nates of the chemical system are known. A summary of the preceding discus-
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sion is presented in Table 1.1.

Table 1.1: Thermodynamic Equilibrium States of A System

Thermodynamic Equilibrium
I. Chemical II. Mechanical IIl. Thermal
Equilibrium: Equilibrium.: Equilibrium:
Balance of opposing No unbalanced force in System is at the same
reactions at equal the system or between temperature as the
rates the system and its surroundings
surroundings

1.5 ADIABATIC AND DIATHERMIC BOUNDARIES

Two types of boundaries, often distinguished in thermodynamics, are adia-
batic* and diathermic. Adiabatic boundaries or heat insulators prevent heat
transfer between a system and surroundings. Diathermic boundaries or heat
conductors allow a system to exchange heat with its surroundings and, in so
doing, are themselves influenced during the interaction.

Suppose two or more systems are connected by an adiabatic boundary to
each other and by a diathermic boundary to an additional system as in Figure
1.1(a). If this configuration is itself enclosed by an adiabatic boundary, then it
can be concluded that the adiabatically connected systems will be in thermal
equilibrium with the additional system. If the adiabatic boundary separating
the systems is removed and replaced by a diathermic boundary at the same
temperature as the original boundary, all systems will be in thermal equilib-
rium with each other, e.g., Figure 1.1(b). Zemansky and Van Ness (1966, p. 7)
expressed these observations as the Zeroth Law of Thermodynamics: “Two
systems in thermal equilibrium with a third are in thermal equilibrium with
each other.” The reader is also referred to Thomsen (1962) for an interesting
discussion of the Zeroth Law.

* Although there is no such thing as a perfect adiabatic heat insulator, experiments may be
carried out so as to closely approximate adiabatic conditions for the duration of the experiment.
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If Aond B ore eoch in A ond B ore in thermal
thermal equilibrium with C, then equilibrivm with each other

Figure 1.1 Dlustration of the Zeroth Law of Thermodynamics. Cross shading indi-
cates adiabatic boundaries; thick dark lines, diathermic boundaries. (From M.W.
Zemansky and H.C. Van Ness, 1966, Basic Engineering Thermodynamics, Fig. 1.2.
Reprinted by permission of McGraw-Hill, Inc., New York.)

1.6 IRREVERSIBLE AND REVERSIBLE PROCESSES

Changes in state take place by irreversible or reversible processes. An ir-
reversible process, also known as a spontaneous or natural process, is one in
which a system moves from a nonequilibrium state to one of equilibrium as a
consequence of some finite external agent or driving force acting on the sys-
tem. Although it is natural for all nonequilibrium systems to move toward an
equilibrium state, the rate at which the drive towards equilibrium occurs is
variable. The freezing of granitic magma intruded into the earth’s crust, for
example, is a thermally irreversible process that can vary from a fraction of a
second at the surface of the intrusion to many millions of years deep inside of
it. The external agent causing the change in state of the intrusion is the ther-
mal gradient between the magma and the cooler surroundings. An example of
mechanical irreversibility is the free expansion of a gas from its container into
a vacuum as a consequence of differential pressure between the gas and the
vacuum, Other examples of spontaneous processes include those displaying
chemical irreversibility. These include changes in chemical composition
(chemical reactions), changes in crystal structure but not composition (poly-
morphic or allotrophic transformations), phase changes, and the mixing of
substances.

A reversible process, also referred to as a quasi-static process, is one in
which system properties change due to an infinitesimally small driving force
that never produces more than an infinitesimally small displacement from
equilibrium. In addition, any change in the system can be reversed by an
infinitesimally small change in the driving force. The system can be thought
of as passing through a continuum of equilibrium states in such a manner that
each infinitesimally small deviation from equilibrium is followed by an equi-
librium state.
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1.7 PATH INDEPENDENT PROPERTIES, CHANGE IN
STATE, AND CYCLIC PROCESSES

It is convenient to express the properties of a system (or its surroundings) in
terms of algebraic variables. In the literature, path independent properties or
variables are referred to by numerous names including: thermodynamic func-
tions, thermodynamic functions of state, thermodynamic variables, thermo-
dynamic properties, state functions, state variables, state properties and point
functions.

If @is a state variable with initial and final values 6; and 6 respectively, the
change in state of a system with respect to 8 is designated as A@ = 6,- 6;. An
infinitesimal change in 8 between the initial and final states of the system is
designated by the exact differential d6. The symbols A and d are used to des-
ignate macroscopic or infinitesimal changes respectively, for state functions
only.

If the initial state ({) of a system is identical to its final state (f), then a
combination of processes that takes the system through a series of changes
from i to fis said to be a cyclic process or a cycle. For any state function @ that
has gone through n cycles, where n is an integer > 0,

EAB‘ =0 or §d9=0

a=1

where § designates a cyclic integral. An example of a mechanical system that
undergoes thousands of cyclic processes per second is the fluid in the power
steering pump of an automobile engine. If the engine is properly tuned, the
thermodynamic properties of the fluid as it enters the high pressure hose are
the same as when it reenters this hose after having first passed through the
steering gear box into the return hose and then into the pump reservoir.

State properties are classified as either extensive or intensive. Extensive
properties are characterized by magnitudes dependent on the size of a system
or system component. They are often expressed with a superscript prime and
include such properties as mass (m), volume (V°), and as will be seen later,
internal energy (U), enthalpy (H°), entropy (S ), Gibbs free energy (G, and
total heat capacity (C). Intensive properties are macroscopic coordinates char-
acterized by magnitudes independent of the size of a system or a system com-
ponent. They include pressure (P), temperature (7), stress (0), strain (g), sur-
face tension (), electric cell Emf (E), specific volume (v), density (p), molar
heat capacity (C), specific heat capacity (c), volume (V), internal energy (U),
enthalpy (H), entropy (S), and Gibbs free energy (G). Intensive properties may
be derived from extensive properties by expressing the extensive property on
a per unit mass (specific), mole, or volume basis. For example, V*, the volume
of a system component is an extensive thermodynamic property. Dividing
volume by the mass or the number of moles, the result is an intensive property
such as specific volume (V7mass) = v or molar volume (V7moles) = V.
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The path independent nature of thermodynamic properties is illustrated in
Figure 1.2. Point 1 (initial state) is defined by P,, V;, and T, while point 2
(final state) is defined by P,, V,, and T. Since both points are represented by
state properties, the change in these properties is the same for any process or
transition path that leads from point 1 to 2. The transition paths, for example,
may be characterized by isothermal (AT = 0), isochoric or isometric (AV = 0),
or isobaric (AP = 0) processes. Each path will result in the same values for P,,
V5, and T; at point 2. As illustrated, the paths can be expressed in terms of
partial derivatives. Mathematical manipulation of these partial derivatives in
conjunction with the appropriate equation of state and thermodynamic rela-
tions given in Chapter 4 are useful in computing other desired property changes.

(A)  AT=0
(P/ V),

1: (P, Vv, T) /(B AP=0 2: (P, V,, Ty
State 1 (V/T), State 2

(C) AV=0
(P/T)y

Figure 1.2 Nlustration of the path independent nature of state properties represented
by points 1 and 2. Changes in P, V, and T are the same for any arbitrary process leading
from point 1 to 2, i.e., the values at point 2 are the same regardless of the path between
the points. Isothermal (path A), isobaric (path B), and isochoric (path C) processes,
represented by arbitrarily drawn lines, can be expressed in terms of partial derivatives.

Closed thermodynamic systems can be described by three state properties
in which any one is a function of the other two. P, V, and T are the state vari-
ables most commonly used to define a system because P, V, and T are ame-
nable to direct experimental measurement. If T and V are known, P is fixed
and the dependent variable P is a state property of the independent variables
Vand T, or P = f,(V,T). Alternately, T = f,(V,P) or V = fy(P.T).

1.8 EQUATION OF STATE AND THE CONDITION OF
EXACTNESS
An equation of state is used to quantify a state property of a specific sub-
stance in terms of other state properties. Equations of state are primarily em-
pirically derived and can be used with confidence only within the range of
measured parameters and limits of experimental error for which they were
determined.
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The equation of state for an ideal gas relates P,V, and T by the relationship
PV’= nRT [1-1]

where n is the number of moles. This equation is applicable at lower pres-
sures, usually below about 5 atm, and at temperatures dependent upon the
particular gas. For condensed states, three useful equations of state are the
volume thermal expansion coefficient, e, defined by

1(av
i) i 1-2
“ Aﬂl -2l
the isothermal compressibility coefficient, B, defined by
1(aV
= ———| — 1-
P Vv (QP )T D=3}

and Hooke's law, defined by o = €E where o is stress, € is strain, and E is
Young's modulus. Values of a and f for sclected substances are given in Ap-
pendix B, Tables B.1 and B.2.

Consider a system that undergoes an infinitesimal change of state. Since
state changes are path independent, corresponding infinitesimals are path in-
dependent also, i.e., exact differentials. For example, if a state variable z is
functionally expressed by

z =f(x;, " < T x,.).
a theorem derived from the chain rule for partial derivatives then gives

oz dz oz
dz= (Ellzdxix + (31_2)1%:2 _____ Lt [3&. ldf,x [1-4]

n-1

where each partial derivative is itself a function of x;, . . ., x,. The terms

& oz
—|dx, ...
(&l )xz,...l.x. ' (&n )x:tx“?x._‘

are called the partial differentials of z with respect to x;, x3, . . . , x, respec-
tively. The sum of the partial differentials, denoted as dz is the total differen-
tial. As an example, consider the change in internal energy of an ideal gas as a
function of temperature and volume. Beginning with U = f{V,T), the total dif-

ferential is
U oU
dU=|—| dT +| — )
(ﬂl {WLW

For the specific case of an ideal gas, (dU/dV)r=0; hence U = f{T) and only the
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first term is finite. For materials behavior in general, such a simplification
would be incorrect. A thermodynamic property, z, that can be expressed in the
form of [1-4], is defined in differential calculus as an exact differential.

An important property of exact differentials can now be derived by con-
sidering the case where z = f{x,y). The result can be extended to functions of
any number of independent variables. If a function f is defined by the relation

z = flx,y),
& oz
dz= (-é;-]rdx % (ij dy.

oz &
Now let M=M(x.y)=(—) and N = N(x, )=[-—-] , then
% )y Y\ P )y

dz = M(x,y)dx + N(x,y)dy.
Taking the partial derivative of M and N with respect to y and x respec-

(=52),-((5)
& )y \ox\d)y =
The two derivatives on the right side of these last two equations are equal

because the order of partial differentiation may be reversed according to a
theorem from partial differential calculus (Protter and Morrey, 1970, p. 736).

It follows that
oM oN )
—_— == [1-5]
5.3,

[1-5] is known as the condition for an exact differential and is a necessary
characteristic of a thermodynamic property. By contrast, an infinitesimal that
is not the differential of a function is called an inexact differential and cannot
be expressed in the form of [1-5].

and

1.9 PATH DEPENDENT PROCESSES: WORK AND HEAT

Unlike thermodynamic properties, path dependent variables are character-
ized by the fact that the change in the variable is contingent upon the specific
path taken between states. Such variables can be thought of as process vari-
ables because numerical values are determined for the process. Path dependent
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variables are designated by attaching the prefix “non” to the path independent
names, €.g., nonstate function or nonthermodynamic property. Work (W) and
heat (Q) are two such examples. Neither can be expressed as an exact differ-
ential. For this reason, infinitesimals of W and Q are indicated as inexact
differentials by using the symbol 8. The inexact differentials* of W and Q are
thus written as 6W and 8Q respectively. It is important to note that it is im-
proper to use such phrases as the “work contained in the body” or the “heat
contained in the body.” Work and heat are path dependent energy transfer
processes and cannot be represented as exact differentials or point functions.

In the applications discussed in this book, only mechanical work or work
against pressure will be considered. Other forms of work such as electrical,
interfacial and gravitational will not be considered.

Work: Quasi-Static Tension or Compression of a Bar

When a bar, subjected to uniaxial elastic tension or compression, changes
length from [ to [ + dl where [ is the original length of the bar, an infinitesimal
amount of the total work performed by the axial load F applied to the bar is
given by

oW’ = -Fdl [1-6]

L
W= —J.Fdl
L

where F is positive for tensile loading and negative for compressive loading
as shown in Figure 1.3, The minus sign is inserted here for consistency with
the conventions used in this book that work done on a system is negative,
while work done by a system is positive.

Since the average uniaxial engineering stress on a bar of original cross-
sectional area A is o = F/A and the infinitesimal strain associated with d! is
de = dl/l, substituting into [1-6] gives

oW’ =—-cAl de

In integrated form,

Since Al =V,
5“": —OV’dE [1'7]

* An altemate symbol appearing in the literature for an inexact differential is & . In this book, a
8 will be used to indicate an inexact differential.
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(A) 4F (B) F
' .
g dII - :—l——;

'F T

Figure 1.3 Uniaxial elastic deformation of a bar, originally of length I. (a) Tensile load
F increases the length of the bar hence W’ < 0. (b) Compressive load F decreases the
length of the bar hence W’< 0. Negative W”agrees with the minus sign convention for
the work done on a system.

The reader can verify the dimensional accuracy of [1-7] by substituting units
for o, V', and de.

Assuming that the change in V”“during elastic deformation is small enough
to be neglected, the work done per unit volume of the bar for a finite change in
strain from & to & is found by integrating [1-7],

£
W= —Jo‘ds (work per unit volume) [1-8]
£1

In order to evaluate [1-8], the functional relationship between ¢ and £ must
be known. This relationship is not readily determined if any point in the bar
undergoes accelerated motion during tensile or compressive loading because
both o and & would then be functions of time. If the external load or driving
force F is slowly increased, a quasi-static process is approximated, and Hooke'’s
law, o = €E, can be substituted into equation [1-8] to give

&
W=—E‘[£d£ [1-9]

£

where E, Young’s Modulus, for the material comprising the bar is available
for many materials. Equations [1-8] and [1-9] are not valid above the yield
point of the material since irreversible deformation will occur.
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Figure 1.4 illustrates experimentally derived first cycle stress-strain loops
for a magnesium alloy (Dowmetal A-T4) subjected to uniaxial tensile load-
ing. The work done per unit volume of the bar stressed from state 1 to state 2
on the original first cycle curve is the shaded area under this curve between
points 1 and 2.
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Figure 1.4 Experimentally derived uniaxial tensile first cycle stress-strain loops for
Dowmetal A-T4 magnesium alloy. The work done per unit volume of the alloy during
the change from state 1 to state 2 on the first loop is the shaded area shown. Equation
[1-8] applies only to partial loop segments parallel to the 6.5 x 10° psi modulus slope
since otherwise, irreversible permanent deformation occurs. MII = microinches per

inch (From M.H. Polzin, 1951, Fig. 9 with modifications. Reprinted by permission of
the Society for Experimental Mechanics, Inc., Bethel, CT.)

Example Problem 1-1

Prior to loading, the original circular cross-sectional area of a 5 m long
brass bar measures 76.2 mm in diameter. After the bar is loaded in compres-
sion to 120 kip, the compressive stress is increased isothermally and quasi-
statically to an engineering stress of 45 ksi.

(a) Compute the total work done as a result of increasing the stress to 45 ksi
from the initial load of 120 kip. Epe = 15 X 105 psi. State assumptions
made in the calculation.

(b) What is the significance of the sign associated with the the work per-
formed?
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Solution

(a) Substituting eE = o into [1-7],

=1 ’
R ' L EBV'a 3 .. @
W’=-EV :ds = ——2——(52 — 7). Substituting e=o>

Vl‘
W =- (0'% —of).
Since V’= m?! for a cylinder of radius r and length /,

76.2
2x25.4

Substituting E = 15 x 106 lbg/in2, o; = 45 x 103 psi, and

2
V'=3.14 x ( J % 5x3.281 x 12 in® = 1391 in®,

120,000 (2x25.4) _
P i = 16,985 psi,
1= 314 [ 76.2 J pst -
-1391(452 - 16.9852)x 10
W= fi-Ibp= —6710 ft-Ib;.

2(15x10")x 12
Assumption: V' #f(g).

(b) W’= —, hence work was done on the system (brass bar).

Work: Quasi-Static Pressure-Volume Expansion or Compression

Figure 1.5 illustrates a PVT system* comprised of a gas inside a piston-
cylinder arrangement. Suppose the cross-sectional area of the cylinder is A. In
addition, suppose the gas in the cylinder is compressed by pushing the piston
further into the cylinder and expanded when the gas pushes the piston in the
opposite direction. If P is the pressure at the system-piston interface, the net
force at this interface is F = PA. When the piston moves an infinitesimal dis-

tance dx, the work performed is equal to
SW = F-dx/n or 6W = PA-dx/n

* A PVT system is a closed system described by the macroscopic coordinates P, V, and T.
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where n is the number of moles of the gas. Since A dx/n = dV,

oW = Pdv [1-10]
Integrating [1-10],
Vl
W=J.PdV [1-11]
Y

(A) ﬁF (B) é
de o ) dJ v

_____

Figure 1.5 Compression of a gas (a) and expansion of a gas (b) during the motion of a
piston in a frictionless cylinder of cross-sectional area A. The force, F, displaces the
piston by dx. The work performed is given by [1-11].

If the piston moves with accelerated motion, both P and V are functions of
time, and the computation becomes a problem in dynamics. However, if the
piston moves slowly in either direction, the system approaches quasi-static
expansion or compression as given by equation [1-11]. If T is constant or can
be expressed as a function of V during these reversible processes, P becomes
afunction of V only and the calculations for work become mathematical prob-
lems involving integrals of the form

1A LA
W= jP(V)dV (Tconstant) or W= J..P(T(V))dV (T=T(V)).

Y Y
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Example Problem 1-2

Six moles of an ideal gas at 100°C (373.16 K)) undergo isothermal reversible
expansion against a constant external pressure of 3.5 atm in a piston-cylinder
apparatus. The volume of the gas is increased by a factor of 450%.
(a) Compute the work performed as a result of the expansion.
(b) Is the + sign for work consistent with convention?

Solution

(a) The initial total volume V, “of the gas is found from [1-1], the equation of
state for an ideal gas: PV’ = nRT. Conversion factors and the gas constant
R used in this problem are found in the Table of Physical Constants and
Conversion Factors preceding Chapter 1.

v,/ 6x83144x373.16
1= " 35%101,325

The final volume V; is
Vo’=4.50xV,"=4.5x52.492 X 103 m?® = 236.214 x 103 m3,

m3 = 52492 x 10-3 m3,

VZ
W’ = J.PdV’ =P(V,’- V")

v
= 3.5 x 101,325(236.214 — 52.492) x 10-3
= 465,155 J.

(b) The + sign associated with W’ is consistent with convention since the gas
system did work on the piston during expansion.

Work: Path Dependence

The path dependent nature of work is demonstrated in Example Problem 1-
3 by considering the frictionless cylinder fitted with a movable piston illustrated
in Figure 1.5. The initial state (1) and final state (4) of the gas are represented
by the points (P,;,V,.T;) and (P,,V,,T,) in Figure 1.6 respectively.

Example Problem 1-3

The purpose of this problem is two-fold. First, it illustrates the fact that
work output is maximum for a reversible process. Secondly, it illustrates the
fact that work output is dependent on path. In part (a), the path is chosen to be
irreversible due to large and abrupt changes in P and V. In part (b), the path is
chosen to be reversible or quasi-static by direct insertion of the equation of
state (in this case the ideal gas law) into [1-11]. Note that the latter is closely
(but not exactly) equivalent to placing a pile of sand grains on top of the
piston and removing one grain at a time between state 1 and state 4. The

14
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following data applies:
n =1 kg mol of ideal gas, T = 25°C (constant temperature process).
Initial pressure: P; = 100 atm (State 1)
Process I: Release to 50 atm  (State 2)
Process II: Release to 20 atm  (State 3)
Process III: Release to 10 atm (State 4)
(a) Calculate the work done during the irreversible expansion from state 1 to
state 4.
(b) Calculate the work done during the reversible expansion from state 1 to
state 4. Note that the nearly analogous removal of 1 grain of sand reduces
the pressure and corresponding volume only very slightly “one grain at a
time.”

Solution
(a) The data are plotted on Figure 1.6.

State 1:
1004— P, =100 atm
\ QUASI-STATIC EXPANSION
T &l "
‘/\/ IRREVERSIBLE EXPANSION
£ 604 State 2:
a be Y. P,=50atm
: N
40' I ~
: State 3: "
4 P, =20 atm tate 4:
= : e: h e l P,=10atm
ol 29§ Jo il

v(m?/kg mole) —

Figure 1.6 Reversible and irreversible expansion of an ideal gas.

_RT _ 8.3144 N-m x 298 K x 1 atm
'" B kgmol-K x100 atm x1.01325x 10°N/m?

=2.45 x 10 m3/(kg mol).

V, = V,P,/P; = 245 x 104 x 2 = 4.9 x 10 m¥(kg mol).
V; = V,P,/Py =245 x 104 X 5 = 12.25 x 10~ m¥/(kg mol).
Vy=V,P)/Py=2.45x 10" x 10 = 24.5 x 10~ m?/(kg mol).
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Vi
W= J.Pdv = area abcd + area defg + area ghij.
v

=[50 x 104(4.9 - 2.45) + 20 x 10%(12.25-4.9) + 10 x 104 x
(24.5 - 12.25)] = 0.0392 atm-m*/(kg mol)

atm-m> " 1.01325x10° N o LKN-m
kg mol atm - m? 1000 N-m

= 3.972 kJ/(kg mol).

=0.0392 x

v, V, =10V
(b) W=IPdV= RT | av/v =8.3144 x 10-* x 298 In(10)

Y Y

= 5.705 kJ/(kg mol).

The preceeding results show that significantly more work would be ac-
complished if the expansion were carried out reversibly. Of course, such an
expansion would be impossible because of frictional losses and time con-
straints,

Heat

Beginning in 1840, James Joule performed a number of experiments to
determine the amount of work necessary to produce the same increase in the
temperature of a system as a given amount of heat. This amount of work be-
came known as the mechanical equivalent of heat and in order to determine
its value, a unit of heat energy called the calorie was defined as the amount of
heat required to raise the temperature of 1 gram of water from 14.5 to 15.5°C
at 1 atm pressure. By performing mechanical as well as electrical work in
adiabatically contained water, Joule determined the mechanical equivalent of
heat to be 4.149 J/cal. This number was found to be completely independent
of the type of work performed. The currently accepted value for the mechani-
cal equivalent of heat (based on refined experimental techniques), known as
the thermochemical calorie, is 4.184 J/cal.

The sign convention for describing heat transfer is: heat energy that flows
into a body (endothermic process) is positive, while heat energy that flows out
of a body (exothermic process) is negative.

The path-dependent nature of heat energy transfer between two thermo-
dynamic states can be confirmed experimentally in the laboratory and is il-
lustrated by Exercise Problem [3.5]. The similarity between Example Prob-
lem 1-3 and Exercise Problem [3.5] is illustrative of the process dependent
nature of work and heat respectively, as discussed in the next chapter.
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INTRODUCTION

1.10 DISCUSSION QUESTIONS
Why is classical thermodynamics thought of as a macroscopic sci-
ence?
Give examples of systems and corresponding surroundings.
Give examples of open and closed systems.
What is the meaning of the phrase “change in state™? @
Give several examples of systems that are chemically irreversible.
What is a path independent property? Give examples and illustrate
with drawings.
Define a cyclic process. Give an example. »
Thermodynamic properties are “extensive” or “intensive.” Define each
and describe the relationship between them.
At the beginning of what turns out to be a very hot summer, you esti-
mate the volume of water in a pond to be 840 m3.At the end of the
summer, you estimate the volume of water to be 820 m3,After listen-
ing to the weather report every day from the time of your first to your
last volume estimate, you determine that the average barometric pres-
sure during this time was 745 mm Hg. If the decrease in water volume
was entirely the result of evaporation, is there any meaning to calculat-
ing the work done during evaporation by using the volume change and
pressure conditions given here?

1.11 EXERCISE PROBLEMS

Calculate the coefficient of thermal expansion, a, at 273 K for an ideal
gas.

Ans: a=3.66 x 10-3K-1,
Consider the reversible expansion process represented by the straight
line 1-2 in the figure below. The working substance is 1 mole of an
ideal gas. P, = 1 atm, P, =2 atm, V, = 2V, and T, = 300 K. Find W for
the process.

Ans: W= 3739 J/mol.

P
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(1.3]

[1.4]

[1.5]

[1.6]

[1.7]

[1.8]

[1.9]
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The generalized expression

13, ()

can be used to calculate C, - C, for any substance. Show that C, - C,

= R for an ideal gas.

An ideal gas undergoes an isobaric change from an initial State

1:(P,,V,"T;) to a final State 2:(P,,V,"T,). Prove V,'- V,’= (nR/P) x

(T = Ty).

Show that the total work performed during the reversible isothermal

expansion or compression of an ideal gas from a volume V;“to V,’is

given by the equivalent expressions W’ = nRT In(V,7V,") and W’ =
nRT In(P,/P,).

The reading on a pressure gauge relative to vacuum is added to atmo-

spheric pressure in order to determine absolute pressure, i.e., absolute

pressure = gauge pressure + atmospheric pressure.

(a) Calculate the work done by 10 moles of an ideal gas expanding
reversibly from 58.784 to 14.696 psig (Ibg/in? gauge) in a piston-
cylinder arrangement at a constant temperature of 125°F. Perform
the calculation without using numerical gas volumes at absolute
pressure. Express the answer in joules.

Ans: W= +24,7501.

(b) Calculate the volume occupied by 10 moles of an ideal gas at 14.696

and 58.784 psig at a temperature of 125°F.
Ans: V’14.696 = 0.133 ms. V’SB.TM =0.053 m3.

(c) Using the gas volumes obtained in (b), calculate the work done by
10 moles of an ideal gas expanding reversibly at a constant tem-
perature of 125°F. Express the answer in joules. How does the
answer compare to the one in (a)? Why are they the same or differ-
ent?

Ans: W’=+24,750], the same as (a) because the path between
identical initial and final states is the same.

Calculate the work done when the hydrostatic pressure on a cube of

Cu measuring 2 cm on an edge is increased reversibly and isother-

mally at 0°C from 1 to 100 atm. Assume a negligible change in V over

the pressure interval.
Ans: W= -0.027 J/mol.

Calculate the work done on the surroundings when one mole of liquid

potassium expands to vapor reversibly and isothermally at 1000 K and

0.753 bar in a piston-cylinder arrangement.

Ans: W= 7627 kJ/kg mol.

Calculate the work done (internal compression) when a 350 1b mass of

low carbon steel transforms from 7 (austenite) to o (ferrite) during an

air quench. Given that V; = 0.0486 nm?® and 2V = 0.0493 nm3, the
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basis for these volumes is 4 atoms of iron (one unit cell of ¥ or two
unit cells of & [Van Vlack, 1985, p. 76]).
Ans: W'=301.

[1.10] Calculate the isobaric temperature change necessary to produce a mo-
lar volume change of 0.02 cm?/mol in a pyrope garnet, Mg;Al,Si;0;,,
crystal. Assume oV . 20z k iS constant over the temperature interval.

Ans: AT=6.71 K.

[1.11] Calculate the molar volume of the pyroxenoid wollastonite, CaSiO,,
ata pressure of 200 bar and temperature of 298 K. Assume BV p,; 208k
is constant over the pressure interval, The initial pressure is 1 bar.

Ans: V =39.92 cm?/mol.

[1.12] Express (dP/dT)y in terms of the volume thermal expansion () and
isothermal compressibility () coefficients of a mineral. Assume Aa
and AP are negligible for small changes in P and T.

Ans: (0P/0T)y = o/B.

[1.13] Calculate the pressure on a crystal of spinel, MgAl,O,, heated iso-
chorically from 273 to 308 K. The pressure at 273 K is 1 bar. Assume
negligible changes in & and f§ over the P-T interval. The volume re-
mains constant because of external constraint.

Ans: P:mgg_ = 543 bar.

[1.14] A beam in a truss bridge is subject to uniaxial tension and compression
(o) in such a manner that the beam undergoes infinitesimal changes
from one thermodynamic equilibrium state (T;,0,) to another (T,,0;).
The total differential of the dependent variable € involves two param-
eters known from experiments to be nearly constant for small tem-
perature changes. These parameters are the coefficient of linear ther-
mal expansion « and Young’s Modulus E. Mathematical definitions
and additional experimental properties are as follows:

a= [ﬁj , atis nearly independent of o
C?r o

E= (;—JZ) , for o < the elastic proportional limit
T

(a) Write an equation of state for the beam as a functional relation-
ship.
Ans: g = {(T,0).
(b) Express the exact differential of € in terms of ¢z and E.
Ans: de = odT + (1/E)do.
(c) Show that if € is constant, (do/dT),. = —QE.
[1.15] Beginning with the expression P = f{V,T)
(a) Express the total differential of P in terms of partial derivatives
and name the partial differentials.
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oP oP
Ans: dP = [W)Tdv-l- [?;-I‘—)VJT,

partial differentials: (%]TdV [%’)Vﬂ'

(b) Use the condition of exactness to demonstrate that dP is an exact

differential.
P P .
Ans: W = ﬁ' thus dP is exact.

[1.16] Uniaxial tensile first cycle stress-strain loops for the magnesium alloy
Dowmetal A-T4 are illustrated below. Small partial cycles beginning
at the lower end of each loop are on a constant slope of modulus E =
6.5 x 108 ksi since the first part of each loop side is a line parallel to the
original modulus line. For each such partial cycle, assume total elastic
return upon the remova: of stress. Compute the total work performed
in ft - Ib; when a 10.0 in. long Dowmetal A-T4 cylinder of radius 2.50

in. undergoes the partial cycles for loops 1 and 2 shown.
(a) Loop 1: 0; = 1 ksi, 0, = 5 ksi.
Ans: W =-30.21ft - Ibg.
(b) Loop 2: & = 2000 pin/in, & = 2500 pin/in.
Ans: W5 =-119.7 ft - Ib;.
Since W and W are negative, work was done on the cylinder.

o 1]

L Lol ]

_% " //
" A Jﬂ - |
A4
A/ f/{f’ /!

1000 2000 3000 4000 5000
STRAIN-MIT

First cycle uniaxial tensile stress-strain curves for Dowmetal A-T4 magnesium alloy.
Loops 1 and 2 are labeled. MII = microinches/inch. (From M.H. Polzin, 1951, Fig. 9
with modifications. Reprinted by permission of the Society for Experimental Mechan-

ics, Inc., Bethel, CT.)
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