Termoquímica

A termoquímica é o estudo do calor produzido ou consumido nas reações químicas. É um ramo da termodinâmica, pois o vazo da reação e seu conteúdo constituem um sistema e as reações químicas provocam troca de energia entre o sistema e suas vizinhanças

$$q_v = \Delta U$$

$$q_p = \Delta H$$

$$\Delta H > 0 => processo endotérmico$$

Variações de entalpia padrão

O estado padrão de uma substância numa certa temperatura é o da substância na sua forma pura sob pressão de 1 bar.

Ex. o estado padrão do etanol, a 298 K, é o etanol líquido puro, a 298 K, sob pressão de 1 bar;

Ex. O estado padrão do ferro a 500 K, é o ferro sólido a 500 K e sob pressão de 1 bar

A variação de entalpia padrão numa reação, ou num processo físico, é a diferença entre as entalpias dos produtos nos respectivos estados padrões e a entalpia dos reagentes, também nos respectivos estados padrões, todos numa certa temperatura

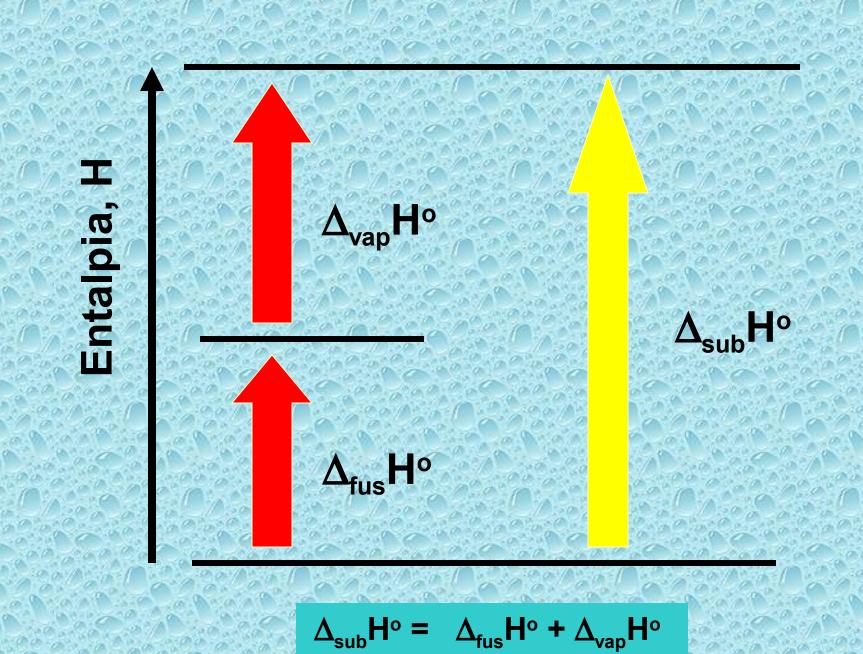
Entalpia de vaporização : variação de entalpia por mol quando um líquido puro, a 1 bar, se vaporiza em um gás, também a 1 bar.

 $H_2O_{(I)} => H_2O_{(v)} \Delta_{vap}H^o(373K) = +40,66 \text{ kJ.mol}^{-1}$

Entalpias padrões de fusão e de vaporização na temperatura de transição

TABELA 2.3* Entalpias padrões de fusão e de vaporização na temperatura de transição, $\Delta_{trs}H^{\ominus}/(kJ \text{ mol}^{-1})$

	T _f /K	Fusão	T _b /K	Vaporização
Ar	83,81	1,188	87,29	6,506
C_6H_6	278,61	10,59	353,2	30,8
H_2O	273,15	6,008	373,15	40,656
				44,016 a
				298 K
He	3,5	0,021	4,22	0,084


O valor de ΔH° será sempre o mesmo, qualquer que tenha sido o processo de transformação, desde que não se alterem os estados inicial e final.


$$H_2O_{(s)} => H_2O_{(g)} \Delta_{sub}H^{\circ}$$

$$H_2O_{(s)} \Longrightarrow H_2O_{(l)} \Delta_{fus}H^0$$

$$H_2O_{(l)} \Longrightarrow H_2O_{(g)} \Delta_{vap}H^o$$

Global:
$$H_2O_{(s)} => H_2O_{(g)} \Delta_{fus}H^o + \Delta_{vap}H^o$$

A entalpia de vaporização da água é +44 kJ.mol⁻¹, a 298 K, a entalpia de condensação do vapor de água, nesta temperatura, é – 44 kJ.mol⁻¹

Entalpias de Transição

Transição	Processo	Símbolo*
Transição	Fase $\alpha \rightarrow \text{fase } \beta$	$\Delta_{ ext{trs}} H$
Fusão	$s \rightarrow 1$	$\Delta_{ ext{fus}}^{ ext{dis}}H$
Vaporização	$1 \rightarrow g$	$\Delta_{ m vap}^{ m res}H$
Sublimação	$s \rightarrow g$	$\Delta_{\mathrm{sub}} H$
Misturação de fluidos	Puro → mistura	$\Delta_{ m mix}^{ m H}$
Solução	Soluto → solução	$\Delta_{ m sol} H$
Hidratação	$X^{\pm}(g) \rightarrow X^{\pm}(aq)$	$\Delta_{ m bid} H$
Atomização	Espécies (s, l, g) → átomos (g)	$\Delta_{_{\mathrm{al}}}H$
Ionização	$X(g) \rightarrow X^{+}(g) + e(g)$	$\Delta_{ ext{ion}}H$
Ganho de elétron	$X(g) + e(g) \rightarrow X^{-}(g)$	$\Delta_{ee}H$
Reação	Reagentes → produtos	ΔH
Combustão	Composto (s, l, g) + $O_2(g) \rightarrow CO_2(g)$, $H_2O(l, g)$	$\Delta_c H$
Formação	Elementos → composto	$\Delta_{ m f} H$
Ativação	Reagentes → complexo ativado	$\Delta^{\sharp}H$

Entalpias de transformações químicas

Equação termoquímica : combinação de uma equação química com a correspondente variação de entalpia padrão

$$CH_{4(g)} + 2O_{2(g)} = > CO_{2(g)} + 2 H_2O_{(1)}$$
 $\Delta_r H^0 = -890 \text{ kJ.mol}^{-1}$

Reagentes isolados, puros, nos respectivos estados padrões => produtos isolados, puros, nos respectivos estados padrões

$2A + B \Rightarrow 3C + D$

$$\Delta_{r}H^{o} = \left\{3H_{m}^{o}(C) + H_{m}^{o}(D)\right\} - \left\{2H_{m}^{o}(A) + H_{m}^{o}(B)\right\}$$

Onde H_m°(J) é a entalpia padrão molar da espécie J na temperatura de interesse

$$\Delta_r H^o = \sum_{\substack{produtos}} v H_m^o - \sum_{\substack{reagentes}} v H_m^o$$

Entalpia padrão de combustão: é a entalpia padrão da reação de oxidação completa de um composto orgânico formando CO₂ gasoso e H₂O líquida, se o composto contiver exclusivamente C, H e O, e também N₂ gasoso, se o N estiver presente.

$$C_6H_{12}O_{6(g)} + 6O_{2(g)} \Rightarrow 6CO_{2(g)} + 6H_2O_{(l)}$$

$$\Delta_{c}H^{o} = -2808...kJ.mol^{-1}$$

Entalpias padrões de formação e de combustão de compostos orgânicos, a 298 K

TABELA 2.5* Entalpias padrões de formação e de combustão de compostos orgânicos, a 298 K						
	$\Delta_{\rm f} H^{\oplus}/({\rm kJ~mol^{-1}})$	$\Delta_{\rm c} H^{\oplus}/({\rm kJ~mol^{-1}})$				
Benzeno, C ₆ H ₆ (1)	+49,0	-3268				
Etano, $C_2H_6(g)$	-84,7	-1560				
Glicose, $C_6H_{12}O_6(s)$	-1274	-2808				
Metano, CH ₄ (g)	-74,8	-890				
Metanol, CH ₃ OH(1)	-238,7	-726				

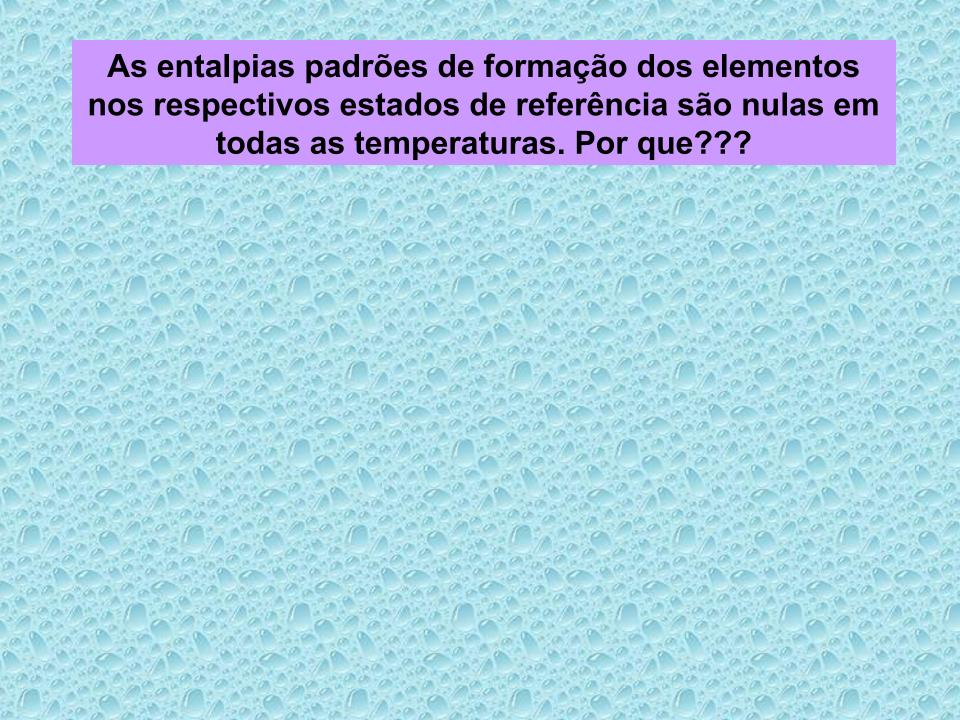
Propriedades termoquímicas de alguns combustíveis						
Combustível	Equação de combustão	$\Delta_c H^{\oplus}/$ (kJ mol ⁻¹)	Entalpia específica/ (kJ g ⁻¹)	Densidade de entalpia/ (kJ L ⁻¹)		
Hidrogênio	$H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(l)$	-286	142	13		
Metano	$CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(I)$	-890	55	40		
Octano	$C_8H_{18}(1) + \frac{25}{2} O_2(g) \longrightarrow 8 CO_2(g) + 9 H_2O(1)$	-5471	48	3.8×10^{4}		
Metanol	$CH_3OH(1) + \frac{3}{2} O_2(g) \longrightarrow CO_2(g) + 2 H_2O(1)$	-726	23	1.8×10^{4}		

Lei de Hess

A entalpia padrão de uma reação é igual a soma das entalpias padrões das reações parciais em que a reação possa ser dividida

As reações parciais não são necessariamente realizáveis na prática. Para o cálculo, elas podem ser reações hipotéticas; a única exigência que se faz é a de as equações químicas estarem equilibradas

A base termodinâmica da Lei de Hess é a independência de Δ_r H° em relação ao processo.


Entalpias Padrões de Formação

A entalpia padrão de formação de uma substância é a entalpia padrão da reação de formação do composto a partir dos respectivos elementos, cada qual no seu estado de referência

O estado de referência de um elemento é o seu estado mais estável, numa certa temperatura, sob pressão de 1 bar

$$6C(s\'olido, grafita) + 3H_2(g) \Rightarrow C_6H_6(l)$$

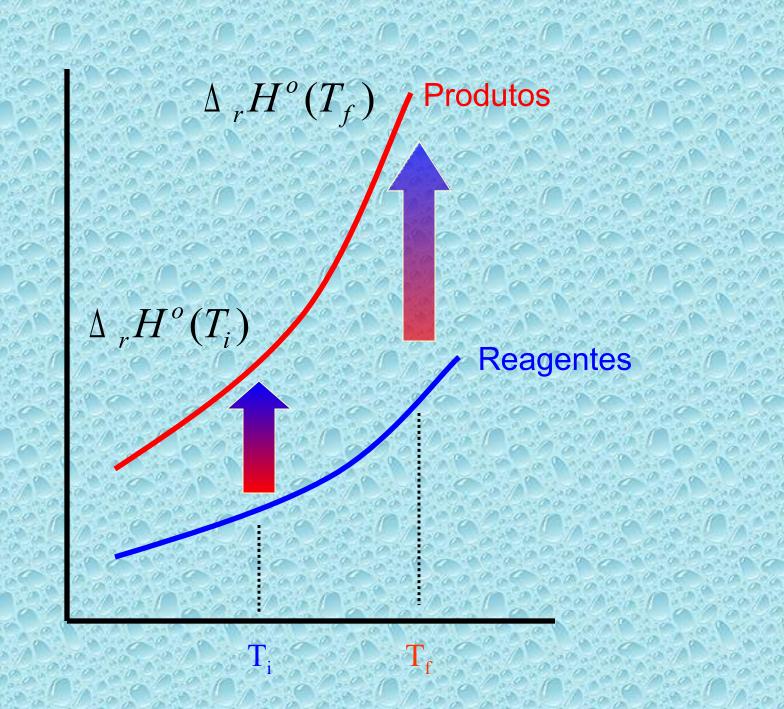
$$\Delta_f H^o = +49,0...kJ.mol^{-1}...a...298K$$

Entalpias de reação em termos de entalpias de formação

$$\Delta_r H^o = \sum_{produtos} v \Delta_f H^o - \sum_{reagentes} v \Delta_f H^o$$

Dependência das Entalpias de Reação com a Temperatura

$$H(T_f) = H(T_i) + \int_{T_i}^{T_f} C_p dT$$


Admitimos que não há transição de fase no intervalo de temperatura considerado

Lei de Kirchhoff

$$\Delta_r H^o(T_f) = \Delta_r H^o(T_i) + \int_{T_i}^{T_f} \Delta_r C_p^o dT$$

$$\Delta_r C_p = \sum_{p,m} v C_{p,m}^o - \sum_{p,m} v C_{p,m}^o$$

$$produtos \qquad reagentes$$

