Capítulo 5 – TERMODINÂMICA DE PROCESSOS DE ESCOAMENTO

(Cap. 6 - Análise da 1ª Lei da TD para um Volume de Controle)

- Conservação da massa e o volume de controle
 A 1^a. Lei da TD para um volume de controle
 Processo em regime permanente
 - Processo em regime transiente uniforme

CONSERVAÇÃO DE MASSA E O VOLUME DE CONTROLE

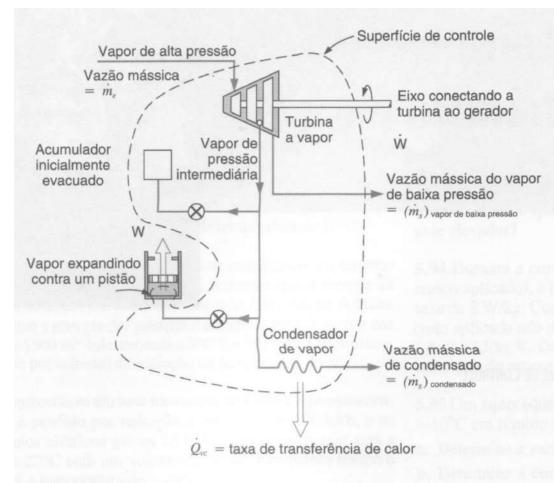
- Volume de Controle: É um volume no espaço que nos interessa para uma análise.
- Superfície de Controle: É a delimitação do Volume de Controle com o exterior
- ☐ Massa, calor e trabalho podem atravessar a Superfície de Controle

Taxa de variação = entrada - saída

Com várias possíveis entradas e saídas de massa, esse enunciado pode ser escrito como

$$\frac{dm_{\text{v.c.}}}{dt} = \sum \dot{m_e} - \sum \dot{m_s} \tag{6.1}$$

Equação da continuidade (conservação da massa)

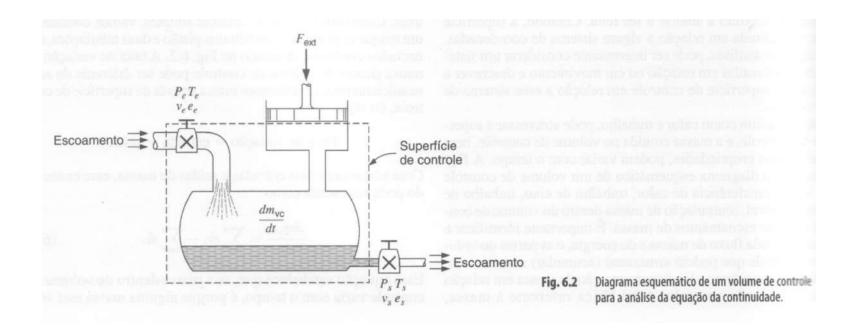


Volume de Controle (VC):

- -Transferência de Q
- Trabalho de eixo
- -Trabalho de fronteira móvel
- -Acumulação de massa no VC
- -Escoamentos de massa

Fig. 6.1 Diagrama esquemático de um volume de controle mostrando transferências e acumulações de massa e de energia.

$$m_{\text{v.c.}} = \int \rho dV = \int (1/v)dV = m_A + m_B + m_C + \cdots$$



Um volume de controle mostrado na Fig. 6.2 considera um tanque com um arranjo de cilindro-pistão e duas tubulações.

Taxa de variação = entrada - saída

Com várias possíveis entradas e saídas de massa, esse enunciado pode ser escrito como

$$\frac{dm_{\text{v.c.}}}{dt} = \sum \dot{m}_e - \sum \dot{m}_s \tag{6.1}$$

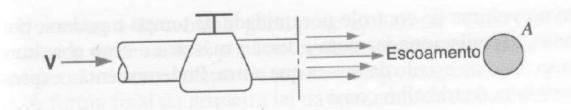


Fig. 6.3 Escoamento através de uma superfície de um volume de controle com seção transversal A. O escoamento é indicado com uma velocidade média à esquerda da válvula e com uma distribuição de velocidades na seção transversal à direita da válvula.

Na Fig. 6.3 considere um fluido escoando no interior de um tubo ou duto:

- -O escoamento através da superfície de controle pode ser indicado com uma velocidade média V, à esquerda da válvula
- ou com uma velocidade distribuída sobre a seção transversal de escoamento, à direita da válvula

A vazão volumétrica é:

$$\dot{V} = \mathbf{V}A = \int \mathbf{V}_{\text{local}} dA \tag{6.2}$$

de modo que a vazão em massa torna-se

$$\dot{m} = \rho_{\text{méd.}} \dot{V} = \dot{V}/v = \int (\mathbf{V}_{\text{local}}/v) dA = \mathbf{V}A/v$$
 (6.3)

Ar está escoando em um tubo de 0,2 m de diâmetro a uma velocidade uniforme de 0,1 m/s. A temperatura é de 25°C e a pressão é de 150 kPa. Determine a vazão mássica.

Solução

Da Eq. 6.3, a vazão mássica é

$$\dot{m} = VA/v$$

Para o ar, usando R da Tabela A.5, temos

$$v = \frac{RT}{P} = \frac{0,287 \times 298,2}{150} = 0,5705 \text{ m}^3/\text{kg}$$

A área da seção transversal é

$$A = \frac{\pi}{4}(0.2)^2 = 0.0314 \text{ m}^2$$

Portanto,

$$\dot{m} = VA/v = 0.1 \times 0.0314/0.5705 = 0.0055 \text{ kg/s}$$

A 1^a. LEI DA TD PARA UM VOLUME DE CONTROLE

Já consideramos a primeira lei da termodinâmica para uma massa de controle (uma quantidade fixa de massa) e notamos, Eq. 5.5, que ela pode ser escrita na forma

$$E_2 - E_1 = {}_1Q_2 - {}_1W_2$$

Vimos também que ela pode ser escrita como uma equação de taxa instantânea, na seguinte forma

$$\frac{dE_{\text{m.c.}}}{dt} = \dot{Q} - \dot{W} \tag{6.4}$$

Para escrever a primeira lei como uma equação de taxa para um volume de controle, procederemos de modo análogo ao usado no desenvolvimento da equação de taxa para a lei da conservação de massa. Para esse propósito, um volume de controle é mostrado na Fig. 6.4, envolvendo taxa de transferência de calor, taxas de trabalho e vazões mássicas. O princípio da conservação de energia estabelece que a energia não pode ser criada ou destruída, de modo que qualquer taxa de variação de energia no volume de controle só pode ser causada por taxas de energia para dentro ou para fora do volume de controle. Já incluímos as taxas de transferência de calor e de trabalho na Eq. 6.4, de modo que

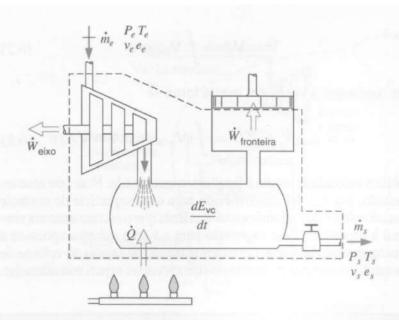


Fig. 6.4 Diagrama esquemático para ilustrar termos na equação da energia para um volume de controle genérico.

as explanações adicionais que necessitamos estão associadas com as vazões mássicas.

O fluido que atravessa a superfície de controle entra ou sai com uma quantidade de energia por unidade de massa dada por

$$e = u + \frac{1}{2}\mathbf{V}^2 + gZ$$

Essa energia está relacionada com o estado e a posição do fluido. Toda vez que um fluido entra no volume de controle em um estado e, ou sai em um estado s, existe um trabalho de movimento de fronteira associado com esse processo. Para explicar isso com mais detalhes, considere uma quantidade de massa escoando para dentro do volume de controle.
Como a massa escoa para dentro, existe uma pressão na sua superfície traseira de tal modo que, à medida que essa massa penetra no volume de controle, ela vai sendo empurrada pela massa
atrás dela proveniente da vizinhança. O efeito líquido é que um
trabalho foi realizado sobre o volume de controle
nesse processo em que a vizinhança empurrou a massa para dentro do volume de controle contra a pressão local e a uma dada velocidade.

$$\dot{W}_{\text{fluxo}} = F\mathbf{V} = \int P\mathbf{V} dA = P\dot{V} = Pv\dot{m}$$
 (6.5)

Para o escoamento que deixa o volume de controle, trabalho está sendo realizado pelo volume de controle à taxa $P_s v_s \dot{m}_s$, enquanto para o escoamento que entra, a taxa de trabalho realizado pela vizinhança é $P_e v_e \dot{m}_e$. O trabalho de fluxo por unidade de massa é então Pv, e a energia total associada com o fluxo de massa é

$$e + Pv = u + Pv + \frac{1}{2}V^2 + gZ = h + \frac{1}{2}V^2 + gZ$$
 (6.6)

Usamos a definição da propriedade termodinâmica entalpia

Admita que estejamos próximos da adutora de água da cidade local. A água líquida escoa no interior da tubulação à pressão de 600 kPa (6 atm) com temperatura em torno de 10°C. Desejamos injetar uma pequena quantidade, 1 kg, de líquido na linha através de um tubo e uma válvula montados lateralmente. Quanto trabalho estará envolvido nesse processo de injeção?

Solução

Se a massa de 1 kg de líquido estiver em um balde e abrirmos a válvula tentando derramar o líquido dentro da adutora pelo tubo lateral, verificaremos que a água da adutora é que vazará pelo tubo aberto para o ambiente. A água escoará da região de pressão mais alta para a região de pressão mais baixa (de 600 kPa na adutora para 101 kPa no ambiente).

Devemos, portanto, colocar a massa de líquido dentro de um arranjo cilindro-pistão (como uma bomba manual) e conectá-lo à tubulação de água. Isto feito, podemos agora pressionar o pistão até que a pressão interna no cilindro iguale a 600 kPa, quando então a válvula da ramificação é aberta e o líquido passa a escoar vagarosamente para dentro da tubulação. O trabalho realizado sobre o líquido na superfície do pistão é

$$W = \int P \, dV = P_{\text{água}} \, mv = 600 \times 1 \times 0,001 = 0,6 \, \text{kJ}$$

e esse é o trabalho necessário para adicionar 1 kg de líquido à água na adutora.

A expansão da primeira lei da termodinâmica a partir da Eq. 6.4 é a seguinte

$$\frac{dE_{\text{v.c.}}}{dt} = \dot{Q}_{\text{v.c.}} - \dot{W}_{\text{v.c.}} + \dot{m}_e e_e - \dot{m}_s e_s + \dot{W}_{\text{fluxo de entra}} - \dot{W}_{\text{fluxo de safda}}$$

Combinando essa equação com a Eq. 6.5, temos

$$\frac{dE_{\text{v.c.}}}{dt} = \dot{Q}_{\text{v.c.}} - \dot{W}_{\text{v.c.}} + \dot{m}_e(e_e + P_e v_e) - \dot{m}_s(e_s + P_s v_s)$$

$$= \dot{Q}_{\text{v.c.}} - \dot{W}_{\text{v.c.}} + \dot{m}_e \left(h_e + \frac{1}{2} \mathbf{V}_e^2 + g Z_e \right)$$
$$- \dot{m}_s \left(h_s + \frac{1}{2} \mathbf{V}_s^2 + g Z_s \right)$$

Nessa forma da equação da energia, o termo da taxa de trabalho é a soma de todos os termos de trabalho de eixo, de trabalho de fronteira e de outros tipos de trabalho realizados pelo volume de controle; contudo, o termo do trabalho de fluxo está, neste caso, listado separadamente e incluído nos termos de taxa de escoamento de massa.

Um volume de controle geral pode apresentar várias vazões de entrada ou de saída e, por conseguinte, um somatório dos termos de taxa de escoamento de massa é frequentemente necessário. A forma final da primeira lei da termodinâmica fica então

$$\frac{dE_{\text{v.c.}}}{dt} = \dot{Q}_{\text{v.c.}} - \dot{W}_{\text{v.c.}} + \sum \dot{m}_e \left(h_e + \frac{1}{2} \mathbf{V}_e^2 + g Z_e \right)
- \sum \dot{m}_s \left(h_s + \frac{1}{2} \mathbf{V}_s^2 + g Z_s \right)$$
(6.7)

$$E_{\text{v.c.}} = \int \rho e \, dV = me = m_A e_A + m_B e_B + m_C e_C + \cdots$$

Como os termos de energia cinética e potencial por unidade de massa aparecem juntos com a entalpia em todos os termos de fluxo, uma notação compacta é freqüentemente usada

$$h_{\text{tot}} = h + \frac{1}{2}\mathbf{V}^2 + gZ$$

 $h_{\text{estag.}} = h + \frac{1}{2}\mathbf{V}^2$

definindo a entalpia total e a entalpia de estagnação (usada na mecânica dos fluidos). A equação reduzida fica então

$$\frac{dE_{\text{v.c.}}}{dt} = \dot{Q}_{\text{v.c.}} - \dot{W}_{\text{v.c.}} + \sum \dot{m}_e h_{\text{tot},e} - \sum \dot{m}_s h_{\text{tot},s} \quad (6.8)$$

PROCESSO EM REGIME PERMANENTE

- 1. A hipótese de que o volume de controle é estacionário em relação ao referencial de coordenadas significa que todas as velocidades medidas em relação a esse referencial são também velocidades relativas à superfície de controle, e não há trabalho associado com a aceleração do volume de controle.
 - A hipótese de que o estado da massa em cada ponto do volume de controle não varia com o tempo requer que

$$\frac{dm_{\rm v.c.}}{dt} = 0$$

e também

$$\frac{dE_{\text{v.c.}}}{dt} = 0$$

Portanto, concluímos que, para o processo em regime permanente, podemos escrever, a partir das Eqs. 6.1 e 6.7,

Equação da continuidade:
$$\sum \dot{m}_e = \sum \dot{m}_s$$
 (6.9)

Primeira lei:
$$\dot{Q}_{\text{v.c.}} + \sum \dot{m}_e \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right) =$$

$$= \sum \dot{m}_s \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right) + \dot{W}_{v.c.}$$
 (6.10)

3. A hipótese de que as várias vazões, estados e taxas nas quais calor e trabalho atravessam a superfície de controle permanecem constantes requer que cada quantidade nas Eqs. 6.9 e 6.10 seja invariável com o tempo. Isso significa que a aplicação das Eqs. 6.9 e 6.10 à operação de algum equipamento é independente do tempo.

Em muitas das aplicações do modelo de regime permanente existem apenas um fluxo de entrada e um fluxo de saída no volume de controle. Para esse tipo de processo, podemos escrever

Equação da continuidade:
$$\dot{m}_e = \dot{m}_s = \dot{m}$$
 (6.11)

Primeira lei:

$$\dot{Q}_{\text{v.c.}} + \dot{m} \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right) = \dot{m} \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right) + \dot{W}_{\text{v.c.}}$$
(6.12)

Rearranjando essa equação, temos

$$q + h_e + \frac{\mathbf{V}_e^2}{2} + gZ_e = h_s + \frac{\mathbf{V}_s^2}{2} + gZ_s + w$$
 (6.13)

onde, por definição,

$$q = \frac{\dot{Q}_{\text{v.c.}}}{\dot{m}} \quad e \quad w = \frac{\dot{W}_{\text{v.c.}}}{\dot{m}}$$
 (6.14)

Note que as unidades para $q \in w$ são kJ/kg. De suas definições, $q \in w$ podem ser considerados como a transferência de calor e o trabalho (exceto o trabalho de fluxo) por unidade de massa fluindo para dentro ou para fora do volume de controle para um processo particular em regime permanente.

Os símbolos q e w também são usados para a transferência de calor e trabalho por unidade de massa de uma massa de controle. Entretanto, como o contexto sempre evidencia quando se trata de uma massa de controle (massa fixa) ou de um volume de controle (envolvendo escoamento de massa), o significado dos símbolos q e w também será evidente em cada situação.

O processo em regime permanente é freqüentemente utilizado na análise de máquinas alternativas ou recíprocas, tais como compressores e motores. Neste caso, a vazão que na realidade deve ser pulsante, é considerada como sendo a vazão média para um número inteiro de ciclos. Uma hipótese semelhante é feita com relação às propriedades do fluido atravessando a superfície de controle e ao calor e trabalho atravessando a superfície de controle. Admite-se também que, para um número inteiro de ciclos percorridos pelo dispositivo alternativo, a energia e a massa dentro do volume de controle não variam.

Alguns exemplos ilustrando a análise de processos em regime permanente são apresentados a seguir.

EXEMPLOS DE PROCESSOS EM REGIME PERMANENTE

Nesta seção, consideraremos alguns exemplos de processos em regime permanente nos quais há uma corrente de fluido entrando e uma corrente de fluido saindo do volume de controle, a fim de que a primeira lei possa ser escrita na forma da Eq. 6.13. Alguns outros exemplos apresentam mais de uma seção de alimentação ou de descarga, de forma que é necessário utilizar a forma geral da primeira lei da Eq. 6.10.

Trocador de Calor

Um trocador de calor é um equipamento que opera geralmente em regime permanente e no qual um fluido escoa através de um tubo ou sistema de tubos, onde calor é transferido do fluido ou para o fluido. O fluido pode ser aquecido ou resfriado e pode ou não estar em ebulição, passando de líquido para vapor, ou em condensação, passando de vapor para líquido. Um exemplo é o condensador em um sistema de refrigeração a R-134a, como mostrado na Fig. 6.5. Vapor superaquecido entra no condensador e sai líquido. O processo tende a ocorrer a pressão constante, porque um fluido escoando em um

tubo sofre, em geral, apenas uma pequena queda de pressão devida ao atrito com as paredes. A queda de pressão pode ou não ser levada em conta em uma determinada análise. Salvo em casos especiais, não há realização de trabalho em trocadores de calor (trabalho de eixo, trabalho elétrico etc.) e as variações nas energias cinética e potencial são geralmente desprezíveis. (Uma exceção pode ser encontrada no tubo de uma

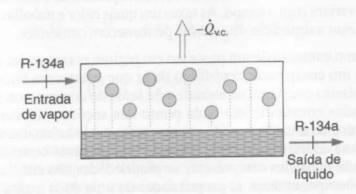


Fig. 6.5 Esquema do condensador de um sistema de refrigeração.

Considere um condensador refrigerado a água em um sistema de refrigeração de grande porte que utiliza R-134a como fluido frigorífico. O fluido entra no condensador a 1 MPa e 60°C, com uma vazão de 0,2 kg/s, e sai como líquido a 0,95 MPa e 35°C. A água de resfriamento entra no condensador a 10°C e sai a 20°C. Determine a taxa na qual a água de resfriamento escoa através do condensador.

Volume de controle: Condensador.

Esquema: Fig. 6.6.

Estados de entrada: R-134a — fixado; água — fixado. Estados de saída: R-134a — fixado; água — fixado.

Processo: Regime permanente.

Modelo: Tabelas de R-134a; tabelas de vapor d'água.

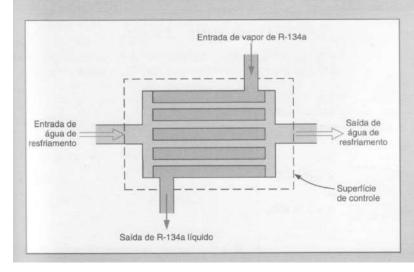


Fig. 6.6 Diagrama esquemático de um condensador de R-134a.

Análise

Com esse volume de controle, temos duas correntes de fluido, a de R-134a e a de água, entrando e saindo do volume de controle. É razoável admitir que as variações nas energias cinética e potencial são desprezíveis. Observamos que o trabalho é nulo, e vamos fazer outra suposição razoável que é aquela de não haver transferência de calor através da superfície de controle. Deste modo, a primeira lei, Eq. 6.10, fica reduzida a

$$\sum \dot{m_e} h_e = \sum \dot{m_s} h_s$$

Usando o índice r para o fluido refrigerante e a para a água, escrevemos

$$\dot{m}_r(h_e)_r + \dot{m}_a(h_e)_a = \dot{m}_r(h_s)_r + \dot{m}_a(h_s)_a$$

Solução

Das tabelas de R-134a e de vapor d'água, temos

°
$$(h_e)_r = 441,89 \text{ kJ/kg}, \quad (h_e)_a = 42,00 \text{ kJ/kg}$$

 $(h_s)_r = 249,10 \text{ kJ/kg}, \quad (h_s)_a = 83,95 \text{ kJ/kg}$

Resolvendo a equação anterior para \dot{m}_a , a vazão de água, obtemos

$$\dot{m}_a = \dot{m}_r \frac{(h_e - h_s)_r}{(h_s - h_e)_a} = 0.2 \text{ kg/s} \frac{(441,89 - 249,10) \text{ kJ/kg}}{(83,95 - 42,00) \text{ kJ/kg}} = 0.919 \text{ kg/s}$$

Este problema também pode ser resolvido considerando dois volumes de controle separados, um tendo o escoamento do R-134a através de sua superfície de controle e o outro tendo o escoamento da água através de sua superfície de controle. Deste modo, há transferência de calor de um volume de controle para outro.

Exemplo 6.3 (continuação)

A transferência de calor para o volume de controle envolvendo o R-134a é calculada primeiro. Neste caso, a equação da primeira lei para regime permanente, Eq. 6.10, fica reduzida a

$$\dot{Q}_{\text{v.c.}} = \dot{m}_r (h_s - h_e)_r$$

= 0,2 kg/s × (249,10 - 441,89) kJ/kg = -38,558 kW

Essa é também a quantidade de calor transferida para o outro volume de controle, para o qual $\dot{Q}_{vc} = +38,558 \text{ kW}.$

$$\dot{Q}_{\text{v.c.}} = \dot{m}_a (h_s - h_e)_a$$

$$\dot{m}_a = \frac{38,558 \text{ kW}}{(83,95 - 42,00) \text{ kJ/kg}} = 0,919 \text{ kg/s}$$

Bocal

Um bocal é um dispositivo cujo propósito é criar escoamentos com altas velocidades à custa da pressão do fluido. Esse dispositivo opera, em geral, em regime permanente e o seu contorno interno é projetado de maneira a expandir o escoamento suavemente até uma pressão mais baixa, provocando assim um aumento na sua velocidade. Não há realização de trabalho, pois não existe parte móvel no bocal. A variação na energia potencial é muito pequena ou nula e, geralmente, nenhuma ou muito pouca

Vapor d'água a 0,6 MPa e 200°C entra num bocal termicamente isolado com uma velocidade de 50 m/s. O vapor sai com uma pressão de 0,15 MPa e uma velocidade de 600 m/s. Determine a temperatura na saída do bocal, se o vapor sair superaquecido, ou o título, se ele sair saturado.

Volume de controle: Bocal.

Estado de entrada: Fixado (ver Fig. 6.7).

Estado de saída: P_s conhecido. Processo: Regime permanente. Modelo: Tabelas de vapor d'água.

Análise

Temos que

$$\dot{Q}_{\rm v.c.} = 0$$
 (bocal isolado)

$$\dot{W}_{\text{v.c.}} = 0$$
 $EP_e \approx EP_s$

A primeira lei (Eq. 6.13) resulta em

$$h_e + \frac{\mathbf{V}_e^2}{2} = h_s + \frac{\mathbf{V}_s^2}{2}$$

Solução Tabela A -6: P = 0.6 MPa e $T=200^{\circ}$ C tem-se h=2850.1 kJ/kg

Resolvendo para h_s , obtemos

$$h_s = 2850,1 + \frac{(50)^2}{2 \times 1000} - \frac{(600)^2}{2 \times 1000} = 2671,4 \text{ kJ/kg}$$

As duas propriedades do fluido na seção de saída que nós conhecemos são a pressão e a entalpia e, portanto, o estado

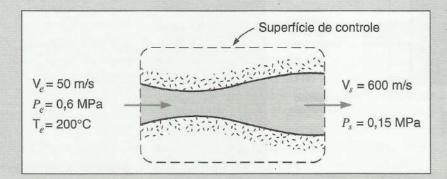


Tabela A -5: P = 0.15 MPa e Tsat=111,37°C tem-se h_1 =467,11 kJ/kg hlv = 2226,5 kJ/kg Hv = 2693,6 kJ/kg

Fig. 6.7 Ilustração para o Exemplo 6.4.

desse fluido está determinado. Como h_s é menor do que h_v a 0,15 MPa, o título é calculado.

$$h = h_1 + x h_{lv}$$

$$2671,4 = 467,1 + x_s 2226,5$$
$$x_s = 0.99$$

Difusor

Um difusor é um dispositivo construído para desacelerar um fluido a alta velocidade de uma maneira tal que a redução na velocidade resulta em um aumento na pressão do fluido. Esse dispositivo opera, em geral, em regime permanente e, na essência, ele é o oposto exato de um bocal. As hipóteses utilizadas na modelagem dos escoamentos nos difusores são similares àquelas dos bocais. Uma energia cinética grande na seção de entrada e uma energia cinética pequena, mas normalmente não desprezível, na seção de descarga são, juntamente com as entalpias na entrada e na saída do difusor, os únicos termos que permanecem na equação da primeira lei, Eq. 6.13.

Estrangulamento

Um processo de estrangulamento ocorre quando um fluido escoando numa linha encontra subitamente uma restrição na passagem do escoamento. Essa restrição pode ser uma placa com um pequeno orifício, conforme mostrado na Fig. 6.8, pode ser uma protuberância na passagem do escoamento criada por uma válvula parcialmente fechada ou pode ser uma mudança para um tubo de menor diâmetro, chamado de *tubo capilar* e encontrado

normalmente em um refrigerador. O resultado dessa restrição é uma queda abrupta na pressão no fluido, quando ele é forçado a encontrar seu caminho através de uma passagem subitamente reduzida. Esse processo é muito diferente daquele que ocorre num bocal de expansão, com contorno e variação de área suaves, e que resulta num aumento significativo da velocidade do escoamento. Num processo de estrangulamento, ocorre algum aumento da velocidade, mas ambas as energias cinéticas, a montante e a jusante da restrição, são usualmente pequenas o bastante para ser desprezadas. Não há realização de trabalho num estrangulamento e a variação de energia potencial é muito pequena ou nula. Normalmente, não há tempo nem oportunidade para uma transferência de calor considerável, de modo que os únicos termos que aparecem na equação da primeira lei são as entalpias de entrada e de saída. Concluímos então que o processo de estrangulamento em regime permanente é aproximadamente uma queda de pressão a entalpia constante, e é assim que ele será modelado, a menos que seja especificado de outra forma.

Freqüentemente, um processo de estrangulamento envolve uma mudança na fase do fluido. Um exemplo típico disso é o escoamento através da válvula de expansão de um sistema de refrigeração por compressão de vapor. O exemplo seguinte lida com esse problema.

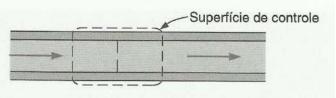


Fig. 6.8 0 processo de estrangulamento.

Considere o processo de estrangulamento através de uma válvula de expansão, ou através de um tubo capilar, em um ciclo de refrigeração por compressão de vapor. Neste processo, a pressão do refrigerante cai da alta pressão no condensador para a baixa pressão no evaporador e, durante esse processo, uma parte do líquido vaporiza instantaneamente (formação de vapor *flash**). Se considerarmos esse processo adiabático, o título do refrigerante entrando no evaporador pode ser calculado.

Considere que o fluido refrigerante seja a amônia e que ela entra na válvula de expansão a 1,50 MPa e a 35°C. A sua pressão ao deixar a válvula é de 291 kPa. Calcule o título da amônia na saída da válvula de expansão.

Volume de controle: Válvula de expansão ou tubo capilar. Estado de entrada: P_e , T_e conhecidos; estado fixado. Estado de saída: P_s conhecido.

Processo: Regime permanente.

Modelo: Tabelas de amônia.

Análise

Usando a análise e as hipóteses básicas do processo de estrangulamento, a primeira reduz-se a

$$h_e = h_s$$

Solução

Das tabelas de amônia, obtemos

$$h_e = 346.8 \text{ kJ/kg}$$

(A entalpia de um líquido ligeiramente comprimido é essencialmente igual à entalpia do líquido saturado na mesma temperatura.)

$$h_s = h_e = 346.8 = 134.4 + x_s(1296.4)$$

 $x_s = 0.1638 = 16.38\%$

^{*}Numa alusão ao clarão instantâneo produzido pelo flash de uma máquina fotográfica. (N.T.)

Turbina

A turbina é um equipamento rotativo, em regime permanente, cujo propósito é produzir trabalho de eixo (ou potência) à custa da pressão do fluido de trabalho. As duas classes gerais desses dispositivos são as turbinas a vapor (ou outro fluido de trabalho), nas quais o vapor saindo da turbina passa por um condensador onde retorna à fase líquida (condensado), e as turbinas a gás, nas quais o gás exaurido é, em geral, descarregado na atmosfera. A pressão de descarga de todas as turbinas é fixada pelo ambiente onde é descarregado o fluido de trabalho, enquanto a pressão de entrada da turbina é obtida por bombeamento ou compressão prévia do fluido de trabalho em um outro processo. Dentro da turbina, existem dois processos distintos. No primeiro, o fluido de trabalho passa através de um conjunto de bocais ou de passagens formadas por pás fixas onde é expandido para uma pressão baixa com uma alta velocidade. No segundo processo dentro da turbina, esse escoamento de alta velocidade é dirigido para um conjunto de pás móveis (rotor), onde a velocidade do escoamento é reduzida antes de ele ser descarregado. Esse decréscimo dirigido de velocidade gera um torque no eixo do rotor que resulta numa produção de trabalho de eixo. O fluido de baixa velocidade e baixa pressão é então descarregado da turbina.

A primeira lei para o processo global numa turbina é dada pela Eq. 6.10 ou pela Eq. 6.13. Em geral, as variações na energia potencial são desprezíveis, assim como a energia cinética na entrada da turbina. Normalmente, a energia cinética na seção de descarga da turbina é desprezada e a transferência de calor da turbina para o meio ambiente é muito pequena. Deste modo, vamos admitir que o processo na turbina é adiabático e que o trabalho produzido, com todas essas simplificações, é o resultado da variação na entalpia entre os estados inicial (entrada da turbina) e final (saída da turbina). No próximo exemplo, entretanto, não desprezamos todos esses termos na primeira lei e analisamos a importância relativa de cada um deles.

A vazão mássica numa turbina a vapor d'água é de 1,5 kg/s e o calor transferido da turbina é de 8,5 kW. Os seguintes dados são conhecidos para o vapor d'água entrando e saindo da turbina.

	Condições de Entrada	Condições de Saída
Pressão	2,0 MPa	0,1 MPA
Temperatura	350°C	
Título		100%
Velocidade	50 m/s	100 m/s
Cota relativa ao plano de referência $g = 9,8066 \text{ m/s}^2$	6 m	3 m

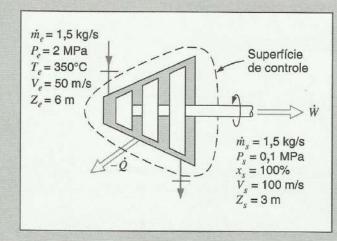


Fig. 6.9 Ilustração para o Exemplo 6.6.

Determine a potência fornecida pela turbina.

Volume de controle: Tv?≤ina (Fig. 6.9). Estado de entrada: Fixado (ver tabela). Estado de saída: Fixado (ver tabela). Processo: Regime permanente. Modelo: Tabelas de vapor d'água.

Análise

Da primeira lei (Eq. 6.12), nós temos

$$\dot{Q}_{\text{v.c.}} + \dot{m} \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right) =$$

$$= \dot{m} \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right) + \dot{W}_{\text{v.c.}}$$

com

$$\dot{Q}_{vc} = -8.5 \, \text{kW}$$

Solução

Das tabelas de vapor d'água, $h_e = 3137,0 \text{ kJ/kg}$. Usando as condições de entrada, obtemos

$$\frac{\mathbf{V}_e^2}{2} = \frac{50 \times 50}{2 \times 1000} = 1,25 \text{ kJ/kg}$$

$$gZ_e = \frac{6 \times 9,8066}{1000} = 0,059 \text{ kJ/kg}$$

De modo semelhante, para a seção de saída, $h_s = 2675,5 \, \mathrm{kJ/kg}$ e

$$\frac{\mathbf{V}_s^2}{2} = \frac{100 \times 100}{2 \times 1000} = 5,0 \text{ kJ/kg}$$

$$gZ_s = \frac{3 \times 9,8066}{1000} = 0,029 \text{ kJ/kg}$$

Então, substituindo esses valores na Eq. 6.12, resulta

$$-8.5 + 1.5(3137 + 1.25 + 0.059) =$$

$$= 1.5(2675.5 + 5.0 + 0.029) + \dot{W}_{v.c.}$$

$$\dot{W}_{\text{v.c.}} = -8.5 + 4707.5 - 4020.8 = 678.2 \text{ kW}$$

Se a Eq. 6.13 for usada, será determinado, primeiro, o trabalho por unidade de massa.

$$q + h_e + \frac{\mathbf{V}_e^2}{2} + gZ_e = h_s + \frac{\mathbf{V}_s^2}{2} + gZ_s + \mathbf{w}$$

$$q = \frac{-8.5}{1.5} = -5.667 \text{ kJ/kg}$$

Então, substituindo os valores na Eq. 6.13, obtemos

$$-5,667 + 3137 + 1,25 + 0,059 = 2675,5 + 5,0 + 0,029 + w$$

 $w = 452,11 \text{ kJ/kg}$

$$\dot{W}_{\text{v.c.}} = 1.5 \text{ kg/s} \times 452.11 \text{ kJ/kg} = 678.2 \text{ kW}$$

Compressor e Bomba

O propósito de um compressor (gás) e de uma bomba (líquido), em regime permanente, é o mesmo: aumentar a pressão do fluido pela adição de trabalho de eixo (ou de potência, numa base de taxa). Existem duas classes fundamentalmente diferentes de compressores. A mais comum é a dos compressores do tipo rotativo (de escoamentos axial ou radial/centrífugo), nos quais os processos internos são essencialmente opostos aos dois processos que ocorrem dentro de uma turbina. O fluido de trabalho entra no compressor a baixa pressão, escoa através de um conjunto de pás móveis e sai a alta velocidade como resultado do trabalho de eixo realizado sobre o fluido. O fluido passa em seguida através de uma seção difusora, na qual é desacelerado de uma maneira tal que sua pressão é aumentada. O fluido sai então do compressor a alta pressão.

Em um compressor alternativo do tipo cilindro-pistão, o cilindro possui, geralmente, aletas externas para propiciar a rejeição de calor para o ambiente durante a compressão (ou, em compressores de grande porte, o cilindro pode ter uma camisa d'água para propiciar uma transferência de calor ainda mais intensa). A transferência de calor do fluido de trabalho é significativa nos compressores alternativos e não pode ser desprezada na primeira lei. Como regra geral para qualquer exemplo ou problema neste texto, consideraremos que o compressor é adiabático, a menos que seja especificado de outra forma.

O compressor centrífugo de uma turbina a gás recebe ar de um ambiente onde a pressão é de 1 bar e a temperatura é de 300 K. Na descarga do compressor, a pressão é de 4 bar, a temperatura é de 480 K e a velocidade é de 100 m/s. A vazão mássica de ar é de 15 kg/s. Determine a potência necessária para acionar o compressor.

Volume de controle: Consideremos um volume de controle envolvendo o compressor, mas a uma certa distância dele, de modo que o ar que atravessa a superfície de controle apresente uma velocidade muito baixa e esteja, essencialmente, nas condições ambientes. Se a superfície de controle passasse diretamente pela seção de entrada do compressor, seria necessário conhecer a temperatura e a velocidade nessa seção.

Esquema: Fig. 6.10.

Estados de entrada e de saída: Ambos os estados fixados.

Processo: Regime permanente.

Modelo: Gás ideal com calor específico constante, valor da Tabela A.5 (300 K).

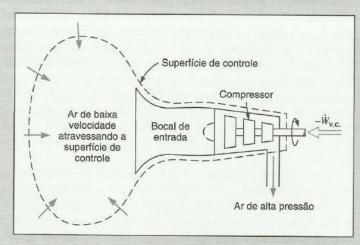


Fig. 6.10 Esquema para o Exemplo 6.7.

Análise

Vamos admitir o compressor adiabático. Vamos também desprezar a variação de energia potencial, bem como a energia cinética na entrada do compressor. A primeira lei, Eq. 6.13, fica reduzida a

$$h_e = h_s + \frac{\mathbf{V}_s^2}{2} + w$$

Solução

Resolvendo para w, obtemos

$$-w = h_s - h_e + \frac{\mathbf{V}_s^2}{2} = C_{po}(T_s - T_e) + \frac{\mathbf{V}_s^2}{2}$$
$$= 1,004 (480 - 300) + \frac{100 \times 100}{2 \times 1000}$$
$$= 180,7 + 5,0 = 185,7 \text{ kJ/kg}$$

0

$$-\dot{W}_{\text{v.c.}} = 15 \times 185,7 = 2785 \text{ kW}$$

O gás ideal e a Tabela A.7 seriam um modelo mais exato para o comportamento do ar. Com esse modelo, a solução é

$$h_e = 300,47 \text{ kJ/kg}, \quad h_s = 482,81 \text{ kJ/kg}$$

$$-w = h_s - h_e + \frac{\mathbf{V}_s^2}{2} = 482,81 - 300,47 + \frac{100 \times 100}{2 \times 1000}$$

$$= 182,3 + 5,0 = 187,3 \text{ kJ/kg}$$

$$-\dot{W}_{v.c.} = 15 \times 187,3 = 2810 \text{ kW}$$

Centrais de Potência e de Refrigeração

Os exemplos seguintes ilustram a incorporação de diversos dispositivos e máquinas, discutidos nesta seção, dentro de um

sistema termodinâmico completo, idealizado para um propósito específico.

Exemplo 6.8

Considere o sistema simples de geração de potência (usina termelétrica) a vapor mostrada da Fig. 6.11. Os seguintes dados referem-se a essa instalação.

Localização	Pressão	Temperatura ou Título
Saída da caldeira	2,0 MPa	300°C
Entrada da turbina Saída da turbina,	1,9 MPa	290°C
entrada do condensador	15 kPa	90%

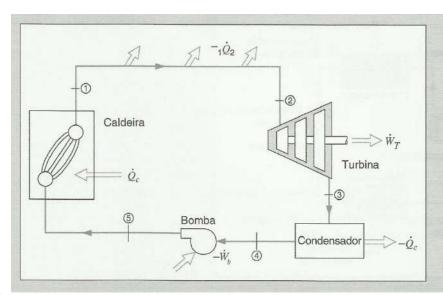


Fig. 6.11 Esquema de um sistema de geração de potência a vapor.

Localização	Pressão	Temperatura ou Título
Saída do condensador, entrada da bomba Trabalho da bomba = 4 kJ/kg	14 kPa	45°C

Determine as seguintes quantidades por kg de fluido escoando através da unidade:

- 1. Calor transferido na linha de vapor entre a caldeira e a turbina.
- 2. Trabalho da turbina.
- 3. Calor transferido no condensador.
- 4. Calor transferido na caldeira.

Para maior clareza, vamos numerar os diversos pontos do ciclo. Os índices *e* e *s* na equação da energia para um processo em regime permanente serão, na solução do problema, substituídos pelos números apropriados.

Visto que existem vários volumes de controle a ser considerados na resolução desse problema, vamos consolidar de algum modo nosso procedimento de solução nesse exemplo. Usando a notação da Fig. 6.11, temos:

Todos os processos: Regime permanente. Modelo: Tabelas de vapor d'água. Das tabelas de vapor d'água:

$$h_1 = 3023,5 \text{ kJ/kg}$$

 $h_2 = 3002,5 \text{ kJ/kg}$
 $h_3 = 226,0 + 0,9(2373,1) = 2361,8 \text{ kJ/kg}$
 $h_4 = 188,5 \text{ kJ/kg}$

Todas as análises: Nenhuma variação nas energias cinética ou potencial será considerada na solução. Em cada caso, a primeira lei é dada pela Eq. 6.13.

Vamos então prosseguir com as respostas para as questões específicas propostas no enunciado do problema.

1. Para o volume de controle da tubulação entre a caldeira e a turbina, a primeira lei e a solução são

$$_{1}q_{2} + h_{1} = h_{2}$$

 $_{1}q_{2} = h_{2} - h_{1} = 3002,5 - 3023,5 = -21,0 \text{ kJ/kg}$

 A turbina é uma máquina essencialmente adiabática. Então, é razoável desprezar, na primeira lei, o calor transferido, de modo que

$$h_2 = h_3 + {}_2w_3$$

 ${}_2w_3 = 3002,5 - 2361,8 = 640,7 \text{ kJ/kg}$

3. Não há trabalho para o volume de controle envolvendo o condensador. Então, a primeira lei e a solução são

$$_{3}q_{4} + h_{3} = h_{4}$$

 $_{3}q_{4} = 188,5 - 2361,8 = -2173,3 \text{ kJ/kg}$

4. Se considerarmos um volume de controle envolvendo a caldeira, o trabalho é igual a zero, de modo que a primeira lei fica

$$5q_1 + h_5 = h_1$$

De modo semelhante, para a seção de saída, $h_s = 2675,5 \text{ kJ/kg}$ e

$$\frac{\mathbf{V}_s^2}{2} = \frac{100 \times 100}{2 \times 1000} = 5.0 \text{ kJ/kg}$$
$$gZ_s = \frac{3 \times 9.8066}{1000} = 0.029 \text{ kJ/kg}$$

Então, substituindo esses valores na Eq. 6.12, resulta

$$-8.5 + 1.5(3137 + 1.25 + 0.059) =$$

$$= 1.5(2675.5 + 5.0 + 0.029) + \dot{W}_{v.c.}$$

$$\dot{W}_{v.c.} = -8.5 + 4707.5 - 4020.8 = 678.2 \text{ kW}$$

Se a Eq. 6.13 for usada, será determinado, primeiro, o trabalho por unidade de massa.

$$q + h_e + \frac{\mathbf{V}_e^2}{2} + gZ_e = h_s + \frac{\mathbf{V}_s^2}{2} + gZ_s + w$$

$$q = \frac{-8.5}{1.5} = -5.667 \text{ kJ/kg}$$

Então, substituindo os valores na Eq. 6.13, obtemos

$$-5,667 + 3137 + 1,25 + 0,059 = 2675,5 + 5,0 + 0,029 + w$$

 $w = 452,11 \text{ kJ/kg}$

$$\dot{W}_{\text{v.c.}} = 1.5 \text{ kg/s} \times 452,11 \text{ kJ/kg} = 678,2 \text{ kW}$$

O refrigerador mostrado na Fig. 6.12 utiliza R-134a como fluido de trabalho. A vazão em massa de refrigerante no ciclo é de 0,1 kg/s e a potência consumida no compressor é de 5,0 kW. Usando a notação da Fig. 6.12, os seguintes dados de estados termodinâmicos no ciclo são conhecidos:

$$P_1 = 100 \text{ kPa},$$
 $T_1 = -20^{\circ}\text{C}$
 $P_2 = 800 \text{ kPa},$ $T_2 = 50^{\circ}\text{C}$
 $T_3 = 30^{\circ}\text{ C},$ $x_3 = 0,0$
 $T_4 = -25^{\circ}\text{C}$

Pede-se:

- 1. O título do refrigerante na entrada do evaporador.
- 2. A taxa de transferência de calor para o evaporador.
- 3. A taxa de transferência de calor do compressor.

Todos os processos: Regime permanente. Modelo: Tabelas do R-134a. Todas as análises: As variações de energias potencial

Todas as análises: As variações de energias potencial e cinética são desprezíveis. A primeira lei em cada caso é dada pela Eq. 6.10.

Solução

 Para um volume de controle englobando a válvula de expansão, a primeira lei dá

$$h_4 = h_3 = 241.8 \text{ kJ/kg}$$

 $h_4 = 241.8 = h_{f4} + x_4 h_{fg4} = 167.4 + x_4 \times 215.6$
 $x_4 = 0.345$

2. Para um volume de controle englobando o evaporador, a primeira lei dá

$$\dot{Q}_{\text{EVAP}} = \dot{m}(h_1 - h_4)$$

= 0.1(387,2 - 241,8) = 14,54 kW

3. E para o compressor, a primeira lei dá

$$\dot{Q}_{\text{COMP}} = \dot{m}(h_2 - h_1) + \dot{W}_{\text{COMP}}$$

= 0,1(435,1 - 387,2) - 5,0 = -0,21 kW

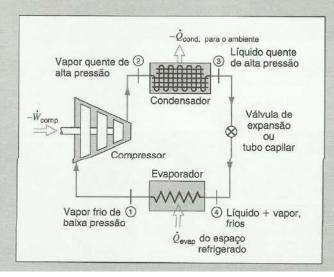


Fig. 6.12 Refrigerador.

PROCESSO EM REGIME TRANSIENTE UNIFORME

hipóteses

- O volume de controle permanece fixo em relação ao sistema de coordenadas.
- 2. O estado da massa dentro do volume de controle pode variar com o tempo, mas, em qualquer instante, o estado é uniforme em todo o volume de controle (ou sobre as várias regiões identificáveis que compõem o volume de controle total).
- 3. O estado da massa atravessando cada uma das áreas de escoamento na superfície de controle é constante com o tempo, embora as vazões possam variar com o tempo.

O processo global ocorre durante o tempo t. Em qualquer instante de tempo durante o processo, a equação da continuidade é

$$\frac{dm_{\text{v.c.}}}{dt} + \sum \dot{m}_s - \sum \dot{m}_e = 0$$

onde o somatório é feito sobre todas as áreas da superfície de controle através das quais ocorre escoamento. Integrando a equação até o instante *t*, obtém-se a variação de massa no volume de controle durante o processo global:

$$\int_0^t \left(\frac{dm_{\text{v.c.}}}{dt}\right) dt = (m_2 - m_1)_{\text{v.c.}}$$

A massa total que deixa o volume de controle durante o tempo t é

$$\int_0^t \left(\sum \dot{m}_s\right) dt = \sum m_s$$

e a massa total que entra no volume de controle durante o tempo t é

$$\int_0^t \left(\sum \dot{m_e}\right) dt = \sum m_e$$

Portanto, para esse intervalo de tempo t, podemos escrever a equação da continuidade para o processo transiente uniforme como

$$(m_2 - m_1)_{\text{v.c.}} + \sum m_s - \sum m_e = 0$$

Na formulação da primeira lei para o processo transiente uniforme consideramos a Eq. 6.7, que se aplica em qualquer instante de tempo durante o processo:

$$\dot{Q}_{\text{v.c.}} + \sum \dot{m}_e \left(h_e + \frac{\mathbf{V}_e^2}{2} + gZ_e \right) =$$

$$= \frac{dE_{\text{v.c.}}}{dt} + \sum \dot{m}_s \left(h_s + \frac{\mathbf{V}_s^2}{2} + gZ_s \right) + \dot{W}_{\text{v.c.}}$$

Como, em qualquer instante de tempo, o estado no interior do volume de controle é uniforme, a primeira lei para o processo transiente toma a seguinte forma

$$\dot{\mathcal{Q}}_{\text{v.c.}} + \sum \dot{m}_e \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right) = \sum \dot{m}_s \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right) + \frac{d}{dt} \left[m \left(u + \frac{\mathbf{V}^2}{2} + g Z \right) \right]_{\text{v.c.}} + \dot{W}_{\text{v.c.}}$$

Integrando essa expressão sobre o intervalo de tempo t, obtemos

$$\int_0^t \dot{Q}_{v.c.} dt = Q_{v.c.}$$

$$\int_0^t \left[\sum \dot{m}_e \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right) \right] dt =$$

$$= \sum m_e \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right)$$

$$\int_0^t \left[\sum \dot{m}_s \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right) \right] dt =$$

$$= \sum m_s \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right)$$

$$\int_0^t \dot{W}_{v.c.} dt = W_{v.c.}$$

$$\int_0^t \frac{d}{dt} \left[m \left(u + \frac{\mathbf{V}^2}{2} + g Z \right) \right]_{v.c.} dt =$$

$$= \left[m \left(u_2 + \frac{\mathbf{V}_2^2}{2} + g Z_2 \right) - m_1 \left(u_1 + \frac{\mathbf{V}_1^2}{2} + g Z_1 \right) \right]_{v.c.}$$

Portanto, para esse intervalo de tempo *t*, podemos escrever a primeira lei da termodinâmica para o processo transiente uniforme como

$$Q_{\text{v.c.}} + \sum_{s} m_e \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right)$$

$$= \sum_{s} m_s \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right)$$

$$+ \left[m_2 \left(u_2 + \frac{\mathbf{V}_2^2}{2} + g Z_2 \right) \right]$$

$$- m_1 \left(u_1 + \frac{\mathbf{V}_1^2}{2} + g Z_1 \right) \Big]_{\text{v.c.}} + W_{\text{v.c.}}$$
(6.16)

Exemplo 6.10

Vapor d'água a uma pressão de 1,4 MPa e temperatura de 300°C escoa em um tubo (Fig. 6.13). Um tanque inicialmente evacuado está conectado a esse tubo através de uma válvula. Abre-se a válvula e o vapor enche o tanque até que a pressão atinja 1,4 MPa, quando então a válvula é fechada. O processo é adiabático e as energias cinética e potencial são desprezíveis. Determine a temperatura final do vapor no tanque.

Volume de controle: Tanque, conforme mostrado na Fig. 6.13.

Estado inicial (no tanque): Vácuo, massa $m_1 = 0$.

Estado final: P, conhecido.

Estado na entrada: P_e , T_e (no tubo) conhecidos.

Processo: Regime transiente.

Modelo: Tabelas de vapor d'água.

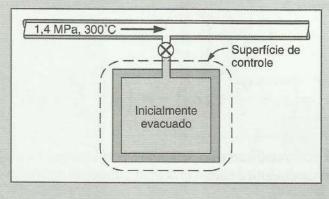


Fig. 6.13 Escoamento para dentro de um tanque evacuado — análise de volume de controle.

Análise

Da primeira lei, Eq. 6.16, temos que

$$Q_{\text{v.c.}} + \sum m_e \left(h_e + \frac{\mathbf{V}_e^2}{2} + g Z_e \right)$$

$$= \sum m_s \left(h_s + \frac{\mathbf{V}_s^2}{2} + g Z_s \right)$$

$$+ \left[m_2 \left(u_2 + \frac{\mathbf{V}_2^2}{2} + g Z_2 \right) - m_1 \left(u_1 + \frac{\mathbf{V}_1^2}{2} + g Z_1 \right) \right]_{\text{v.c.}} + W_{\text{v.c.}}$$

Observe que $Q_{v.c.}$, $W_{v.c.}$, m_e e $(m_1)_{v.c.}$ são iguais a zero. Além disso, admitimos que as energias cinética e potencial são desprezíveis. Deste modo, a equação da primeira lei para esse processo fica reduzida a

$$m_e h_e = m_2 u_2$$

Da equação da continuidade para esse processo, Eq. 6.15, concluímos que

$$m_2 = m_e$$

Então, combinando a equação da continuidade com a primeira lei, obtemos

$$h_e = u_2$$

Isto é, a energia interna final do vapor no tanque é igual à entalpia do vapor entrando no tanque.

Solução

Das tabelas de vapor d'água, obtemos

$$h_e = u_2 = 3040,4 \text{ kJ/kg}$$

Como a pressão final é dada, 1,4 MPa, conhecemos duas propriedades do estado final e ele está, portanto, determinado. A temperatura correspondente à pressão de 1,4 MPa e a uma energia interna de 3040,4 kJ/kg pode ser determinada, obtendo-se o valor de 452°C.

Este problema também pode ser resolvido considerando o vapor d'água que entra no tanque e o espaço em vácuo como uma massa de controle, conforme indicado na Fig. 6.14.

O processo é adiabático, mas devemos examinar as fronteiras quanto ao trabalho. Se imaginarmos um êmbolo entre o vapor contido na massa de controle e o vapor que flui atrás, perceberemos imediatamente que a fronteira move-se e que o vapor do tubo realiza trabalho sobre o vapor contido na massa de controle. A quantidade de trabalho é

$$-W = P_1 V_1 = m P_1 v_1$$

Escrevendo a primeira lei para a massa de controle, Eq. 5.11, e notando que as energias cinética e potencial podem ser desprezadas, temos

$$1Q_2 = U_2 - U_1 + {}_1W_2$$

$$0 = U_2 - U_1 - P_1V_1$$

$$0 = mu_2 - mu_1 - mP_1v_1 = mu_2 - mh_1$$

Portanto,

$$u_2 = h_1$$

que é a mesma conclusão obtida na análise com um volume de controle.

Os dois exemplos seguintes ilustram outras aplicações do processo transiente uniforme.

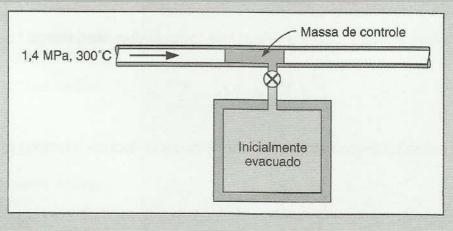


Fig. 6.14 Escoamento para dentro de um tanque evacuado — análise de massa de controle.

Exemplo 6.11

Considere que o tanque do exemplo anterior tenha um volume de 0,4 m³ e contenha inicialmente vapor d'água saturado a 350 kPa. A válvula é então aberta e o vapor da linha, a 1,4 MPa e 300°C, escoa para o tanque até que a pressão atinja 1,4 MPa. Calcule a massa de vapor d'água que escoa para dentro do tanque.

Volume de controle: Tanque, como na Fig. 6.13. Estado inicial: P_1 , vapor saturado; estado fixado. Estado final: P_2 . Estado na entrada: P_e , T_e ; estado fixado. Processo: Transiente. Modelo: Tabelas de vapor d'água.

Análise

A situação é a mesma do Exemplo 6.10, com a exceção de que o tanque não está inicialmente em vácuo. Observamos novamente que $Q_{v.c.} = 0$, $W_{v.c.} = 0$ e $m_e = 0$, e admitimos também que as variações nas energias cinética e potencial são nulas. A primeira lei para este processo, Eq. 6.16, fica reduzida a

$$m_e h_e = m_2 u_2 - m_1 u_1$$

A equação da continuidade, Eq. 6.15, fica reduzida a

$$m_2 - m_1 = m_e$$

Então, combinando as equações da continuidade e da primeira lei, obtemos

$$(m_2 - m_1)h_e = m_2u_2 - m_1u_1$$

$$m_2(h_e - u_2) = m_1(h_e - u_1)$$

Existem duas incógnitas nessa equação: m_2 e u_2 . Entretanto, temos uma equação adicional:

$$m_2 v_2 = V = 0.4 \text{ m}^3$$

Substituindo (b) em (a) e rearranjando, temos

$$\frac{V}{v_2}(h_e - u_2) - m_1(h_e - u_1) = 0$$

na qual as únicas incógnitas são v_2 e u_2 , ambas funções de T_2 e P_2 . Como T_2 é desconhecida, isso implica que só existe um único valor de T_2 para o qual a Eq. (c) será satisfeita, e devemos obter esse valor pelo método de tentativa e erro.

Solução

Temos que

$$v_1 = 0,5243 \text{ m}^3/\text{kg}, \quad m_1 = \frac{0,4}{0,5243} = 0,763 \text{ kg}$$

 $h_e = 3040,4 \text{ kJ/kg}, \quad u_1 = 2548,9 \text{ kJ/kg}$

Admita que

$$T_2 = 300^{\circ} \text{C}$$

Para essa temperatura e o valor conhecido de P_2 , temos

$$v_2 = 0.1823 \text{ m}^3/\text{kg}$$
, $u_2 = 2785.2 \text{ kJ/kg}$

Exemplo 6.11 (continuação)

Substituindo em (c), obtemos

$$\frac{0,4}{0,1823}(3040,4-2785,2) - 0,763(3040,4-2548,9) =$$
= +185,0

Admita agora que

$$T_2 = 350^{\circ} \text{C}$$

Para essa temperatura e o valor conhecido de P_2 , temos

$$v_2 = 0,2003 \text{ m}^3/\text{kg}, \quad u_2 = 2869,1 \text{ kJ/kg}$$

Substituindo esses valores em (c), resulta

$$\frac{0,4}{0,2003}(3040,4-2869,1)-0,763(3040,4-2548,9) =$$

$$=-32,9$$

Concluímos então que o valor real de T_2 deve estar entre esses dois valores considerados para que (c) seja verificada. Por interpolação,

$$T_2 = 342$$
°C e $v_2 = 0.1974$ m³/kg

A massa final no interior do tanque é

$$m_2 = \frac{0.4}{0.1974} = 2,026 \text{ kg}$$

e a massa de vapor d'água que escoa para dentro do tanque é

$$m_e = m_2 - m_1 = 2,026 - 0,763 = 1,263 \text{ kg}$$

Exemplo 6.12

Um tanque de 2 m³ contém amônia saturada a uma temperatura de 40°C. Inicialmente, o tanque contém 50% de líquido e 50% de vapor em volume. Vapor é retirado pelo topo do tanque até que a temperatura atinja 10°C. Admitindo que somente vapor (ou seja, nenhum líquido) saia do tanque e que o processo seja adiabático, calcule a massa de amônia retirada do tanque.

Volume de controle: Tanque.

Estado inicial: T_1 , V_{liq} , V_{vap} ; estado fixado.

Estado final: T_2 .

Estado de saída: Vapor saturado (temperatura variando).

Processo: Transiente.

Modelo: Tabelas de amônia.

Análise

Na equação da primeira lei, Eq. 6.16, devemos notar que $Q_{v.c.}=0$, $W_{v.c.}=0$ e $m_e=0$ e vamos admitir que as variações nas energias cinética e potencial são desprezíveis. Entretanto, a entalpia do vapor saturado varia com a temperatura e não podemos então admitir simplesmente que a entalpia do vapor saindo do tanque permaneça constante. Por outro lado, notamos que a 40° C, $h_v=1470,2$ kJ/kg e que a 10° C, $h_v=1452,0$ kJ/kg. Como a variação de h_v é pequena durante esse processo, podemos admitir com boa exatidão que h_s é a média destes dois valores. Deste modo,

$$(h_s)_{\rm méd.} = 1461,1 \text{ kJ/kg}$$

e a primeira lei da termodinâmica reduz-se a

$$m_s h_s + m_2 u_2 - m_1 u_1 = 0$$

e a equação da continuidade (da Eq. 6.15) torna-se

$$(m_2 - m_1)_{\text{v.c.}} + m_s = 0$$

Combinando essas duas equações, temos

$$m_2(h_s - u_2) = m_1 h_s - m_1 u_1$$

Solução

Os seguintes valores são obtidos das tabelas de amônia:

$$v_{11} = 0,001 725 \text{ m}^3/\text{kg}, \quad v_{v1} = 0,083 13 \text{ m}^3/\text{kg}$$

 $v_{12} = 0,001 60, \quad v_{1v2} = 0,203 81$
 $u_{11} = 368,7 \text{ kJ/kg}, \quad u_{v1} = 1341,0$
 $u_{12} = 226,0, \quad u_{1v2} = 1099,7$

Calculando, primeiramente, a massa inicial no tanque, m_1 , notamos que a massa de líquido inicialmente presente, m_{11} , é

$$m_{11} = \frac{1.0}{0.001725} = 579.7 \text{ kg}$$

Exemplo 6.12 (continuação)

Similarmente, a massa inicial de vapor, m_{vl} , é

$$m_{v1} = \frac{1,0}{0,083 \ 13} = 12,0 \ \text{kg}$$

$$m_1 = m_{v1} + m_{v1} = 579,7 + 12,0 = 591,7 \ \text{kg}$$

$$m_1 h_s = 591,7 \times 1461,1 = 864533 \ \text{kJ}$$

$$m_1 u_1 = (mu)_{v1} + (mu)_{v1} =$$

$$= 579,7 \times 368,7 + 12,0 \times 1341,0$$

$$= 229827 \ \text{kJ}$$

Substituindo os valores na equação da primeira lei, obtemos

$$m_2(h_s - u_2) = m_1h_e - m_1u_1 =$$

= 864 533 - 229 827 = 634 706

Existem duas incógnitas, m_2 e u_2 , nessa equação. Entretanto,

$$m_2 = \frac{V}{v_2} = \frac{2,0}{0,001\ 60 + x_2(0,203\ 81)}$$

e

$$u_2 = 226,0 + x_2(1099,7)$$

e portanto as duas incógnitas são funções somente de x_2 , o título no estado final. Consequentemente,

$$\frac{2,0(1461,1-226,0-1099,7x_2)}{0,00160+0,20381x_2} = 634706$$

Resolvendo para x_2 obtemos

$$x_2 = 0.01144$$

Então,

$$v_2 = 0,001 60 + 0,011 44 \times 0,203 81 = 0,003 932 \text{ m}^3/\text{kg}$$

$$m_2 = \frac{2}{0,003 932} = 508,7 \text{ kg}$$

e a massa de amônia que foi retirada do tanque, m_s , é

$$m_s = m_1 - m_2 = 591,7 - 508,7 = 83,0 \text{ kg}$$

Respostas: no arquivo do Cap.6 livro

PROBLEMAS

Equação da continuidade e vazões

- **6.1** Ar a 35°C e 105 kPa escoa em um duto retangular de 100×150 mm num sistema de aquecimento. A vazão volumétrica é igual a 0,015 m³/s. Qual é a velocidade do ar escoando no duto e qual é a vazão mássica?
- **6.2** Uma caldeira recebe uma vazão de 5000 kg/h de água líquida a 5 MPa e 20°C, e aquece a água de forma tal que o estado na saída é de 450°C com uma pressão de 4,5 MPa. Determine as áreas de escoamento mínimas necessárias dos tubos de alimentação e de descarga da caldeira para que as velocidades médias não ultrapassem 20 m/s.
- **6.3** Uma companhia de gás natural distribui gás metano em uma tubulação a 200 kPa e 275 K. A companhia mediu cuidadosamente a velocidade média do escoamento obtendo o valor de 5,5 m/s em uma tubulação com 50 cm de diâmetro. Admitindo uma aproximação de gás ideal, como você avaliaria a vazão mássica sabendo que a incerteza na medida da velocidade média é de ±2%?
- **6.4** Nitrogênio gasoso escoando em um tubo de 50 mm de diâmetro a 15°C e 200 kPa, na vazão de 0,05 kg/s, encontra uma válvula parcialmente fechada. Se existe uma queda de pressão de 30 kPa através da válvula e a temperatura essencialmente não varia, quais são as velocidades médias dos escoamentos a montante e a jusante da válvula?

- **6.5** Vapor saturado de R-134a sai do evaporador a 10°C em um sistema de bomba de calor, com uma vazão mássica constante de 0,1 kg/s. Qual é o menor diâmetro de tubo que pode ser usado nesse local se a velocidade do refrigerante não deve exceder 7 m/s?
- **6.6** Vapor a 3 MPa e 400°C entra em uma turbina com uma vazão volumétrica de 5 m³/s. Uma extração de 15% da vazão mássica na entrada sai da turbina a 600 kPa e 200°C. O restante deixa a turbina a 20 kPa com um título de 90% e uma velocidade de 20 m/s. Determine a vazão volumétrica do escoamento extraído e o diâmetro do tubo final de saída.
- **6.7** Uma bomba retira água de um rio a 10°C e 95 kPa e bombeia para um canal de irrigação situado 20 m acima do nível do rio. Todos os tubos da instalação têm diâmetro de 0,1 m e a vazão mássica é de 15 kg/s. Admita que a pressão na descarga da bomba seja suficiente apenas para transportar uma coluna d'água de 20 m de altura submetida a uma pressão de 100 kPa no topo. Determine o trabalho de fluxo nas seções de alimentação e descarga da bomba e a energia cinética do escoamento.

Escoamento simples, processos em dispositivos unitários

Bocais, difusores

6.8 Gás nitrogênio escoa para dentro de um bocal convergente a 200 kPa e 400 K, e a uma velocidade muito baixa. O gás escoa

para fora do bocal a 100 kPa e 330 K. Se o bocal possui isolamento térmico, determine a velocidade de saída.

6.9 Um bocal recebe 0,1 kg/s de vapor a 1 MPa e 400°C com energia cinética desprezível. A saída é a 500 kPa e 350°C e o escoamento é adiabático. Determine a área da seção transversal e a velocidade do escoamento na saída do bocal.

6.10 Vapor superaquecido de amônia entra em um bocal com isolamento térmico a 20°C e 800 kPa, conforme mostrado na Fig. P6.10, com uma velocidade baixa e vazão constante de 0,01 kg/s. A amônia sai a 300 kPa com uma velocidade de 450 m/s. Determine a temperatura (ou título, se saturado) e a área na saída do bocal.

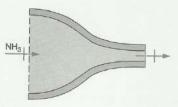


FIGURA P6.10

6.11 Uma barragem represa uma lâmina d'água de 5 m de altura. Um furo de 1 cm de diâmetro no fundo da comporta permite a saída de água líquida a 20°C. Despreze quaisquer variações na energia interna e determine a velocidade de saída e a vazão mássica da água.

6.12 Um difusor, mostrado na Fig. P6.12, tem ar entrando a 100 kPa e 300 K com uma velocidade de 200 m/s. A área da seção transversal na entrada do difusor é de 100 mm². Na saída, a área é de 860 mm² e a velocidade é de 20 m/s. Determine a pressão e a temperatura do ar na saída.

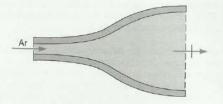


FIGURA P6.12

6.13 Um difusor recebe um escoamento de um gás ideal a 100 kPa e 300 K com uma velocidade de 250 m/s, e a velocidade na saída é de 25 m/s. Determine a temperatura na saída se o gás for o argônio, o hélio, ou o nitrogênio.

6.14 Ar escoa para dentro de um difusor a 300 m/s, 300 K e 100 kPa. Na saída, a velocidade é muito pequena, mas a pressão é alta. Determine a temperatura na saída considerando que não existe transferência de calor.

6.15 A frente de um motor a jato age como um difusor recebendo ar a 900 km/h, -5° C e 50 kPa, e trazendo-o para 80 m/s em relação ao motor, antes de entrar no compressor. Se a área de escoamento frontal é 80% da área na entrada do compressor, determine a pressão e a temperatura na entrada do compressor.

Escoamento estrangulado

6.16 Hélio é estrangulado de 1,2 MPa e 20°C para uma pressão de 100 kPa. O diâmetro do tubo na saída é muito maior do que o do tubo na entrada de forma que as velocidades de escoamento na entrada e na saída são iguais. Determine a temperatura do hélio na saída e a razão entre os diâmetros de entrada e de saída.

6.17 Vapor d'água saturado escoa em uma linha a 400 kPa e parte dele é retirado a 100 kPa após passar através de uma válvula. Qual é a temperatura do vapor na saída da válvula, admitindo que não existem variações na energia cinética e nem transferência de calor.

6.18 Água líquida a 180°C e 2000 kPa é estrangulada para dentro da câmara de um evaporador *flash* com uma pressão de 500 kPa. Despreze quaisquer variações na energia cinética. Qual é a fração de líquido e de vapor na câmara?

6.19 Água a 1,5 MPa e 150°C é estrangulada adiabaticamente através de uma válvula até a pressão de 200 kPa. A velocidade de entrada é de 5 m/s e os diâmetros dos tubos na entrada e na saída da válvula são iguais. Determine o estado (desprezando a energia cinética na equação da energia) e a velocidade da água na saída da válvula.

6.20 R-134a, escoando em uma linha a 25°C, 750 kPa e com energia cinética desprezível, é estrangulado para uma pressão de 165 kPa. Determine a temperatura de saída e a razão entre os diâmetros do tubo de saída e do tubo de entrada ($D_{\rm saf}/D_{\rm entra}$) para que a velocidade permaneça constante.

Turbinas, expansores

6.21 Uma turbina a vapor é alimentada com 2 kg/s de água a 1000 kPa e 350°C com uma velocidade de 15 m/s. A saída é a 100 kPa, x=1 e uma velocidade muito baixa. Determine o trabalho específico e a potência produzida.

6.22 Uma pequena turbina de alta velocidade operando com ar comprimido produz uma potência de 100 W. O ar entra a 400 kPa, 50°C e sai da turbina a 150 kPa, -30°C. Admitindo que as velocidades são baixas e que o processo é adiabático, determine a vazão mássica de ar requerida através da turbina.

6.23 Uma pequena turbina, mostrada na Fig. P6.23, é operada com carga parcial pelo estrangulamento, para 1,1 MPa, de 0,25 kg/s de vapor disponível a 1,4 MPa e 250°C, antes de sua entrada na turbina, e a descarga é a 10 kPa. Se a turbina produz 110 kW, determine a temperatura de descarga (e o título, se saturado).

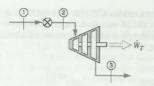


FIGURA P6.23

6.24 Uma turbina hidráulica recebe 2 kg/s de água a 2000 kPa e 20°C com uma velocidade de 15 m/s. A saída é a 100 kPa, 20°C e a uma velocidade muito baixa. Determine o trabalho específico e a potência produzida.

6.25 A barragem Hoover através do rio Colorado represa água no lago Mead a uma altura de 200 m acima do nível do rio. Os geradores elétricos movidos por turbinas hidráulicas geram 1300 MW de potência. Se a água está a 17,5°C, determine a vazão mínima de água em m³/s escoando através das turbinas.

Compressores, ventiladores

6.26 Um compressor em um refrigerador comercial recebe R-22 a -25° C e x=1. A saída é a 800 kPa e 40°C. Despreze as energias cinéticas e determine o trabalho específico.

6.27 O compressor de uma grande turbina a gás recebe ar do meio ambiente a 95 kPa e 20°C com uma velocidade baixa. Na descarga do compressor, o ar está a 1,52 MPa e 430°C com velocidade de 90 m/s. A potência do compressor é de 5000 kW. Determine a vazão mássica de ar através do compressor.

6.28 Um ventilador comum, portátil, sopra 0,2 kg/s de ar ambiente com uma velocidade de 18 m/s. Qual deve ser a potência mínima do motor elétrico que aciona o ventilador? Dica: Existem variações significativas em *P* ou *T*?

6.29 Um compressor aspira ar a 100 kPa e 17°C e libera a 1 MPa e 600 K para um resfriador de pressão constante, de onde o ar sai a 300 K. Determine o trabalho específico no compressor e a transferência de calor específica no resfriador.

6.30 Um escoamento permanente de 4 kg/s de amônia passa através de um dispositivo em um processo politrópico. A entrada é a 150 kPa, -20°C e a saída a 400 kPa, 80°C, e as energias potencial e cinética podem ser desprezadas. O trabalho específico re-

querido pode ser determinado por $\left(\frac{n}{n-1}\right)\Delta(Pv)$

a. Determine o expoente politrópico n.

b. Determine o trabalho e a transferência de calor específica.

6.31 Um ventilador de exaustão em um prédio deve ser capaz de movimentar 2,5 kg/s de ar a 98 kPa e 20°C através de um orifício de ventilação com 0,4 m de diâmetro. Que velocidade

deve ser gerada pelo ventilador e qual a potência requerida para fazer isso?

Aquecedores, resfriadores

6.32 Bióxido de carbono entra em regime permanente em um aquecedor a 300 kPa e 15°C, e sai a 275 kPa e 1200°C, conforme mostrado na Fig. P6.32. Variações nas energias cinética e potencial são desprezíveis. Calcule a transferência de calor requerida por quilograma de bióxido de carbono escoando através do aquecedor.

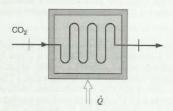


FIGURA P6.32

6.33 Nitrogênio líquido saturado a 500 kPa entra em uma caldeira na taxa de 0,005 kg/s e sai como vapor saturado. Em seguida, entra em um superaquecedor também a 500 kPa de onde sai a 500 kPa e 275 K. Determine as taxas de transferência de calor na caldeira e no aquecedor.

6.34 Um condensador (resfriador) recebe 0,05 kg/s de R-22 a 800 kPa e 40°C e resfria-o até 15°C. Existe uma pequena perda de pressão de modo que o estado de saída é líquido saturado. Qual a capacidade de resfriamento (kW) que o condensador deve ter?

6.35 Em um gerador de vapor, água líquida comprimida a $10\,\mathrm{MPa}$ e $30^\circ\mathrm{C}$ entra em um tubo de $30\,\mathrm{mm}$ de diâmetro a uma taxa de $3\,\ell/\mathrm{s}$. Vapor a $9\,\mathrm{MPa}$ e $400^\circ\mathrm{C}$ sai do tubo. Determine a taxa de transferência de calor para a água.

6.36 Um chiller resfria água líquida com o objetivo de condicionar ambientes. Admita que 2,5 kg/s de água a 20°C e 100 kPa é resfriada para 5°C em um chiller. Qual a transferência de calor (kW) necessária?

6.37 O condicionador de ar de uma residência ou de um carro possui um resfriador que traz o ar atmosférico de 30°C para 10°C a uma pressão constante de 101 kPa. Se a vazão é de 0,5 kg/s, determine a taxa de transferência de calor.

6.38 Um escoamento de 2 kg/s de água a 500 kPa e 20°C é aquecido, em um processo a pressão constante, até 1700°C. Determine a melhor estimativa para a taxa requerida de transferência de calor.

Escoamentos em bombas, tubos e canais

6.39 Uma pequena corrente de água a 20°C desce em um penhasco criando uma queda d'água de 100 m de altura. Estime a temperatura no poço sob a queda d'água, desprezando as velocidades horizontais das correntes a montante e a jusante da queda d'água. Qual a velocidade da água imediatamente antes de bater no poço?

6.40 Uma pequena bomba d'água é usada em um sistema de irrigação. A bomba retira água de um rio a 10°C e 100 kPa a uma taxa de 5 kg/s. A descarga da bomba está conectada a um tubo que conduz a água até um canal aberto localizado a 20 m acima do nível do rio. Considere que o processo é adiabático e que a água permanece a 10°C. Determine o trabalho requerido pela bomba.

6.41 A linha municipal de abastecimento de água para um prédio alto está a uma pressão de 600 kPa a 5 m acima do nível do solo. A bomba do prédio aumenta a pressão da água de modo que ela pode ser descarregada no último andar, a 150 m acima do nível do solo, a 200 kPa. Considere uma vazão de 10 kg/s de água líquida a 10°C e despreze qualquer variação na energia cinética e na energia interna u. Determine o trabalho na bomba.

6.42 Considere uma bomba recebendo água líquida a 15°C e 100 kPa e descarregando-a através de um tubo curto de diâmetro constante acoplado a um bocal com diâmetro de saída de 1 cm (0,01 m), para a atmosfera a 100 kPa. Despreze a energia cinética nos tubos e considere u constante para a água. Determine a velocidade de descarga e a vazão mássica se a bomba consome uma potência de 1 kW.

6.43 Uma tubulação de vapor para um prédio com 1500 m de altura recebe vapor superaquecido a 200 kPa ao nível do solo. No último andar, a pressão é de 125 kPa e a perda de calor na tubulação é de 110 kJ/kg. Qual deve ser a temperatura de entrada do vapor superaquecido para que não se forme condensado no interior do tubo?

6.44 Uma ferramenta de corte usa um bocal que gera um jato de água líquida a altíssima velocidade. Considere uma velocidade de 1000 m/s na saída da água líquida a 20°C num jato com 2 mm de diâmetro (0,002 m). Qual é a vazão mássica do jato d'água? Qual o tamanho (potência) da bomba necessária para gerar este jato a partir de um suprimento constante de água líquida a 20°C e 200 kPa?

Escoamento múltiplo, processos em dispositivos unitários

Turbinas, compressores, expansores

6.45 Uma turbina a vapor recebe água a 15 MPa e 600°C, e a uma taxa de 100 kg/s, conforme mostrado na Fig. P6.45. Na extração do meio, 20 kg/s são retirados a 2 MPa e 350°C, e o Figura P6.47

restante deixa a turbina a 75 kPa, com um título de 95%. Considerando que não há transferência de calor e que não existem variações na energia cinética, determine a potência total de saída na turbina.

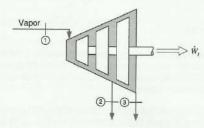


FIGURA P6.45

6.46 Uma turbina recebe vapor de duas caldeiras. A primeira caldeira fornece 5 kg/s de vapor a 3 MPa e 700°C, e a segunda 15 kg/s a 800 kPa e 500°C. O vapor na saída da turbina está a 10 kPa, com um título de 96%. Determine a potência total de saída na turbina adiabática.

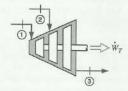
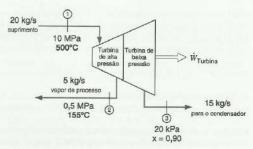


FIGURA P6.46

6.47 A co-geração é frequentemente utilizada quando um suprimento de vapor é requerido em um processo térmico industrial. Considere que um suprimento de 5 kg/s de vapor a 0,5 MPa é necessário. Em vez de gerar este vapor bombeando água líquida através de uma caldeira, o arranjo mostrado na Fig. P6.47 é usado para extrair o vapor requerido de uma turbina de alta pressão. Determine a potência na turbina para esse processo de co-geração.



6.48 Uma grande máquina de expansão recebe, em regime permanente, dois escoamentos de água com baixas velocidades. Vapor de alta pressão com vazão de 2,0 kg/s a 2 MPa e 500°C entra no ponto 1, e 0,5 kg/s de água de resfriamento entra no ponto 2 a 120 kPa e 30°C. Um único escoamento sai no ponto 3 a 150 kPa e com 80% de título, através de um tubo de exaustão com 0,15 m de diâmetro. Determine a velocidade de exaustão e a potência de saída na máquina.

6.49 Dois escoamentos permanentes de ar entram num volume de controle, conforme mostrado na Fig. P6.49. Um escoamento é de 0,025 kg/s a 350 kPa e 150°C, estado 1, e o outro entra a 350 kPa e 15°C; ambos estão escoando com baixa velocidade. Um único escoamento de ar sai a 100 kPa e -40° C, estado 3, através de um tubo com 25 mm de diâmetro. O volume de controle rejeita calor para o meio ambiente a uma taxa de 1,2 kW e produz 4,5 kW de potência. Determine a vazão de ar de entrada no estado 2.

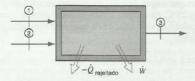


FIGURA P6.49

Trocadores de calor

6.50 Um trocador de calor, mostrado na Fig. P6.50, é usado para resfriar um escoamento de ar de 800 K para 360 K, a uma pressão constante de 1 MPa. O fluido refrigerante é água a 15°C e 0,1 MPa. Se a água sai como vapor saturado, determine a razão entre as vazões $\dot{m}_{som}/\dot{m}_{x}$.

FIGURA P6.50

6.51 Em um superaquecedor, 2,5 kg/s de água são levados do estado de vapor saturado a 2 MPa para o estado de vapor superaquecido a 450°C, num processo isobárico. A energia é fornecida por ar quente a 1200 K escoando no sentido contrário do vapor (um trocador de calor de contracorrente). Determine a menor vazão mássica de ar possível para garantir que sua temperatura de saída seja 20°C maior do que a temperatura da água de entrada.

6.52 Um condensador (trocador de calor) leva 1 kg/s de água a 10 kPa e 300°C para o estado de líquido saturado a 10 kPa, conforme mostrado na Fig. P6.52. O resfriamento é feito pela água de um lago a 20°C que retorna ao lago a 30°C. Para um

condensador com isolamento térmico, determine a vazão da água de resfriamento.

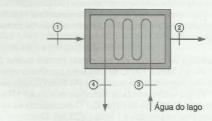


FIGURA P6.52

6.53 Um resfriador em um condicionador de ar leva 0.5~kg/s de ar de 35° C para 5° C, a uma pressão constante de 101~kPa. O ar que sai do resfriador é misturado adiabaticamente com uma corrente de 0.25~kg/s de ar a 20° C e 101~kPa, e o escoamento combinado é lançado em um duto. Determine a transferência de calor no resfriador e a temperatura do ar lançado no duto.

6.54 Nitrogênio líquido a 90 K e 400 kPa escoa em uma sonda usada em cirurgia criogênica. Na linha de retorno, o nitrogênio está a 160 K e 400 kPa. Determine a transferência de calor específica para o nitrogênio. Se a linha de retorno tem uma seção transversal com área 100 vezes menor do que a linha de alimentação, qual é a razão entre as velocidades de saída e de entrada do nitrogênio?

Processos de mistura

6.55 Um desuperaquecedor mistura vapor d'água com água líquida numa razão que produz vapor d'água saturado sem qualquer troca de calor com o meio ambiente. Um escoamento de 0,5 kg/s de vapor superaquecido a 5 MPa e 400°C, e um escoamento de água líquida a 5 MPa e 40°C entram no desuperaquecedor. Se vapor d'água saturado a 4,5 MPa é produzido, determine a vazão de água líquida.

6.56 Uma câmara de mistura com transferência de calor recebe 2 kg/s de R-22 a 1 MPa e 40°C em uma linha e 1 kg/s de R-22 a 30°C com um título de 50% em outra linha com uma válvula. O escoamento único de saída está a 1 MPa e 60°C. Determine a taxa de transferência de calor para a câmara de mistura.

6.57 R-22, como líquido comprimido a 1,5 MPa e 10°C, é misturado com vapor saturado de R-22 a 1,5 MPa num processo em regime permanente. As duas vazões são de 0,1 kg/s e o escoamento na saída está a 1,2 MPa com um título de 85%. Determine a taxa de transferência de calor no processo de mistura.

6.58 Dois escoamentos são misturados para formar um escoamento único. O escoamento no estado 1 é de 1,5 kg/s de água a 400 kPa e 200°C, e o escoamento no estado 2 está a 500 kPa e 100°C. Que vazão mássica no estado 2 produzirá uma saída $T_1 = 150$ °C, se a pressão na saída for mantida em 300 kPa?