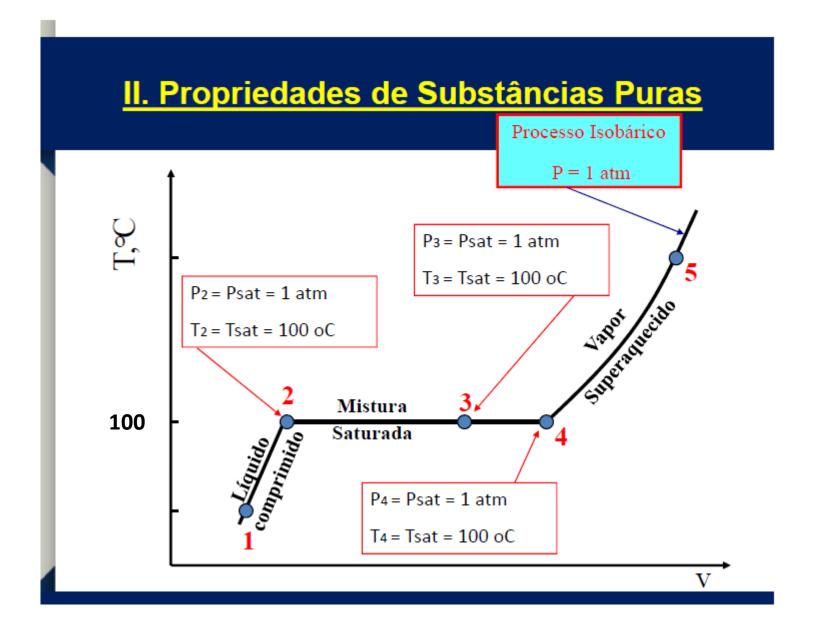
Aula 3


- Propriedades de uma substância pura

Livro texto: Introdução à Termodinâmica para Engenharia

Richard E. Sonntag e Claus Borgnakke

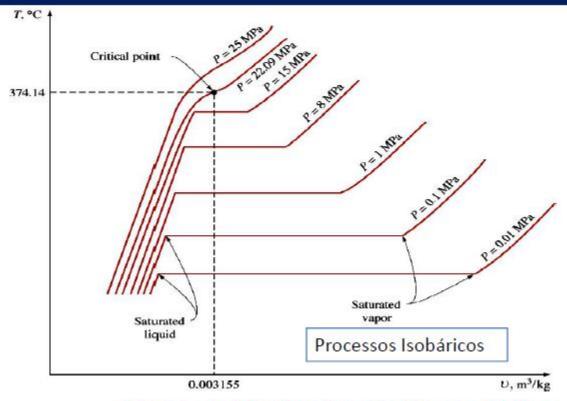
Editora LTC – 2003

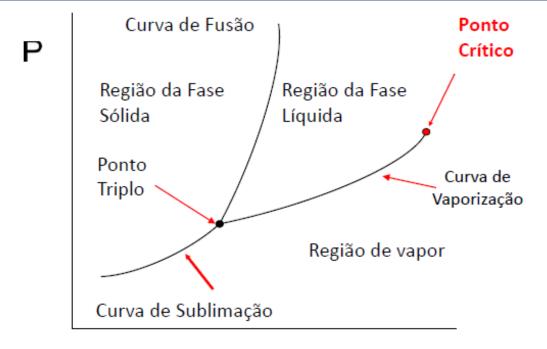
(atualização do livro "Fundamentals of Termodynamics, 5th ed., destes 2 autores junto com G. J. Van Wylen – 1998)

- Durante o processo de ebulição, as fases líquida e de vapor coexistem em equilíbrio.
 - A fase líquida é chamada de líquido saturado.
 - A fase vapor é chamada de vapor saturado.

Calor Latente é a quantidade de energia absorvida ou liberada durante a mudança de fase:

- Calor latente de fusão solidificação/fusão =333,7 kJ/kg H₂O , Psat = 1 atm
- Calor latente de vaporização ebulição/condensação =2257,1 kJ/kg H₂O , Psat = 1 atm




Diagrama Tv (água) – Mudança de fase

PONTO CRÍTICO

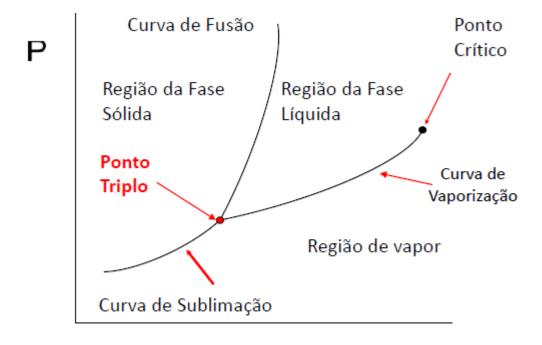
- É o ponto onde o estado para o líquido e para o vapor saturado são idênticos.
- A pressão, temperatura e volume neste estado recebem a terminologia CRÍTICA.
- A curva de saturação apresentará uma inflexão com uma inclinação nula.
- A tabela a seguir mostra os valores críticos para algumas substâncias,

Tabela 1 : Pontos críticos de algumas substâncias

Substância	Tc (K) (oC)	Pc (bar)
Ar	133 (-140)	37,7
Butano	425 (+152)	38
Propano	370 (+97)	42,7
CO ₂	304 (+31)	73,9
Hidrogênio	33,2 (-239,8)	13
CH ₄	191 (-82)	46,4
N ₂	126 (-147)	33,9
O ₂	154 (-119)	50,5
Água	647,3 (+374,3)	220,9

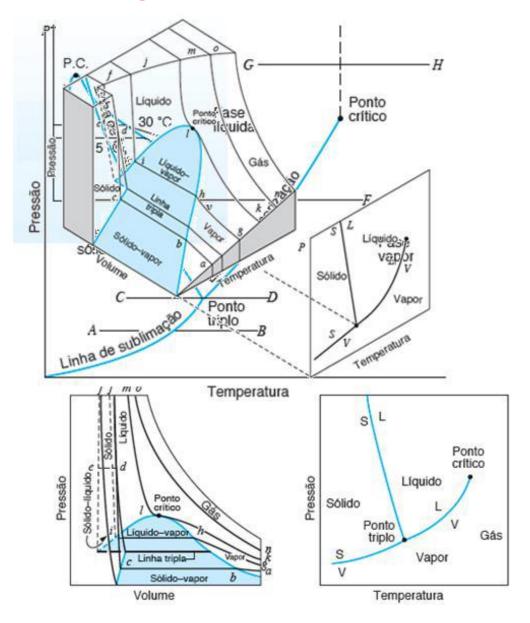
Т

Diagrama de fases de uma substância pura


PONTO TRIPLO

- É definido como sendo o estado no qual as três fases podem estar presentes em equilíbrio,
- Cada substância tem um PONTO TRIPLO,
- A tabela a seguir mostra o ponto triplo para algumas substâncias,

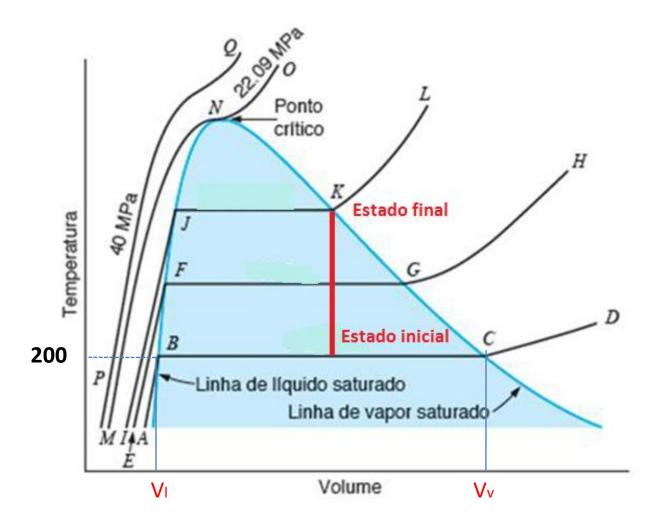
Tabela 2 : Pontos triplos de algumas substâncias


Substância	Temperatura [°C]	Pressão [atm]
Hidrogênio (normal)	-259	0.071
Nitrogênio	-210	0.1237
Oxigênio	-219	0.00150
Mercúrio	-3.9	0.000000013
Água	0.01	0.00603
Zinco	419	0.05
Prata	960	0.0001
Cobre	1083	0.00000078

Ponto Triplo água: $T = 0.01^{\circ}C$ e P = 0.6113 kPa

Т

Diagrama tridimensional P-V-T


EXERCICIO 1:

Um tanque rígido contem inicialmente 1.4 kg de uma mistura saturada de água a 200°C. Nesse estado, 25% do volume são ocupados pelo líquido e o restante pelo vapor. Calor é adicionado à água até que o tanque contenha somente vapor saturado. Determine: (a) o volume do tanque, (b) a temperatura e pressão final.

SOLUÇÃO.

Dados: mistura saturada ______ vapor saturado

$$m_{M (T=200^{\circ}C)} = 1.4 \text{ kg}$$
 $x = 1.0$ $v_{I}=0.25V$, $v_{V}=0.75V$ (V : volume do tanque)

(a) Das tabelas termodinâmicas (a 200 °C)

$$v_L = 0.00115 \, 7 \, \text{m}^3/\text{kg}, \quad v_V = 0.12736 \, \text{m}^3/\text{kg}$$

Como há 1.4 kg de mistura saturada, podemos escrever que:

$$m_M = m_L + m_V$$

$$m_M = \frac{v_L}{v_L} + \frac{v_V}{v_V}$$

$$1.4 kg = \frac{0.25V m^3}{0.00115 7m^3/kg} + \frac{0.75V m^3}{0.12736 m^3/kg}$$

$$V = 0.0063 \ m^3$$

(b) Processo a volume constante

$$v = \frac{V}{m} = \frac{0.0063 \, m^3}{1.4 \, kg}$$

$$v = 0.0045 \text{ m}^3/\text{kg}$$

Na mesma tabela A-4 (página A-6) procurar o valor 0,0045 na coluna de Vapor Saturado do Volume Específico, observa-se que a temperatura aumenta para mais que 370 C:

T (C)	Vv (m3/kg)	P (MPa)	interpolando:
370	0,004925	21,03	
T	0,0045	P	T = 370,99 C
374,14	0,003155	22,09	P= 21,28 MPa