

ESTATÍSTICA - LISTA DE EXERCÍCIOS

Prof. Fernando Catalani

Lista de Exercícios: Potência do teste, erro tipo II, teste de aderência, regressão.

- 1) Em cada uma das situações, estabeleça se o problema de teste de hipóteses está corretamente colocado e explique.
- a) H_0 : $\mu = 25$; H_1 : $\mu \neq 25$.
- b) H_0 : $\sigma > 25$; H_1 : $\sigma = 25$.
- c) $H_0: \bar{x} = 5$; $H_1: \bar{x} \neq 5$.
- d) H_0 : p = 0.5; H_1 : p = 0.1.
- e) H_0 : s = 30; H_1 : s > 30.

Resp: Apenas a está correto.

- 2) O calor liberado, em calorias por grama, por uma mistura de cimento tem distribuição normal. Pensa-se que a média seja 100 e o desvio padrão 2. Desejamos testar H_0 : $\mu = 100 \ versus \ H_1$: $\mu \neq 100$, com uma amostra de 9 espécimes.
- a) Se a região de aceitação for 98,5 $\leq \bar{x} \leq 101,5$, encontre a probabilidade α do erro tipo I.
- b) Encontre β para o caso em que a média verdadeira seja 103 calorias.
- c) Encontre β para o caso em que a média verdadeira seja 105 calorias. Compare com o item b).
- 3) Repita o exercício 2, usando uma amostra de n=5 e a mesma região de aceitação. Compare com o exercício 2.

Resp: a) 0,093, b) 0,046, c) 0,00005.

- 4) Um fabricante está interessado na voltagem de saída de um fornecimento de energia de um computador pessoal. A voltagem de saída é considerada normal, com desvio-padrão de 0,25 Volt. O fabricante deseja testar H_0 : $\mu = 5 V$; H_1 : $\mu \neq 5 V$, usando uma amostra de n=8.
- a) Se a região de aceitação é $4.85 \le \bar{x} \le 5.15$, encontre o α .
- b) Encontre a potência do teste para detectar uma voltagem de saída média verdadeira de 5,1 V.
- c) Refaça o exercício, agora com n=16. **Resp:** α =0,016, 1- β =0,212.
- 5) Um experimento de Rutherford e Geiger tinha por objetivo provar que a distribuição de Poisson é a que melhor se ajusta nos casos de desintegração de substâncias radiativas, abaixo temos uma tabela com os números de partículas α emitidas por uma substância radiativa. Na

tabela temos o número de partículas observado em intervalos de tempo e o número esperado segundo uma distribuição de Poisson. Verifique a adequação do modelo de Poisson a esses dados. k : número de partículas, Nk: número observado, Npk: número esperado.

k	Nk	Npk
0	57	54,39
1	203	210,5
2	383	407,36
3	525	525,5
4	532	508,4
5	408	393,5
6	273	253,8
7	139	140,3
8	45	67,9
9	27	29,2
>10	16	17,1
Total	2608	~2608,00

Resp: De fato, a distribuição é Poissoniana (confirma H₀).

6) Um fabricante de um certo tipo de aço afirma que o desvio-padrão da resistência à tensão de seu produto é de 5 kg/cm². Um comprador deseja verificar a veracidade dessa informação e submete um amostra de 11 cabos a um teste de tensão, obtendo média de 263 kg/cm² e s²=48. Esses resultados trazem alguma evidência contra a afirmação do fabricante, num nível de 5%?

Resp: Rejeitamos a hipótese (chi2=19,2).

7) Num estudo comparativo de tempo médio de adaptação, uma amostra aleatória, de 50 homens e 50 mulheres de um grande complexo industrial, produziu os seguintes resultados:

Estatística	Homens	Mulheres
Média	3,7 anos	3,2 anos
Desvio-padrão	0,8 anos	0,9 anos

Considerando que $\sigma_1 = \sigma_2$, quais conclusões você tira sobre a população de homens e mulheres quanto ao tempo de adaptação?

Resposta: Rejeitamos H₀.

8) Uma fábrica de embalagens para produtos químicos está testando dois processos para combater a corrosão de suas latas especiais. Para verificar o efeito dos tratamentos, foram usadas 2 amostras (abaixo - porcentagem de corrosão eliminada). Qual a conclusão sobre os tratamentos? Considere que as variâncias são iguais. Se houver diferença, construa um intervalo de confiança para a diferença entre as médias. Use α =0,05.

Método	Amostra	média	Desvio-padrão
A	15	48	10
В	12	52	15

Resp: Rejeitamos H₀

- 9) A tabela abaixo indica o valor do aluguel (y) e a idade de cinco imóveis (x).
- a) Encontre a reta de MQ, supondo uma relação linear.
- b) Faça o gráfico dos pontos e da reta ajustada. Analise.
- c) Qual o significado dos coeficientes angular e linear?
- d) construa a tabela ANOVA para os dados e interprete.
- e) Qual o valor de R²?

X (anos)	10	13	5	7	20
Y (mil reais)	4	3	6	5	3

10) Um laboratório está interessado em medir o efeito da temperatura sobre a potência de um antibiótico. Dez amostras de 50 gramas cada foram guardadas a diferentes temperaturas, e após 15 dias mediu-se a potência. Os resultados estão na tabela abaixo:

Temperatura (°C)	30	50	70	90
Potência	38, 43	32, 26, 33	19, 27, 23	14, 21

- a) Encontre a reta de MQ, supondo uma relação linear.
- b) A que temperatura a potência se anularia?
- c) Qual o significado do coeficiente angular?
- d) construa a tabela ANOVA para os dados e interprete.
- e) Qual o valor de R²?