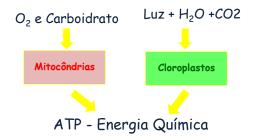
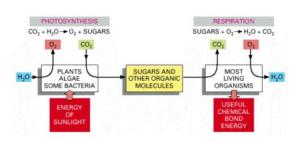
Universidade de São Paulo (USP) Escola de Engenharia de Lorena (EEL) Engenharia Ambiental

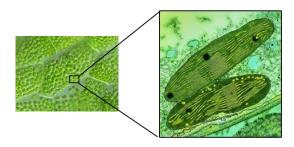


Cloroplasto e Fotossíntese


Disciplina: Biologia Geral Prof: Tatiane da Franca Silva

Cloroplasto e Mitocôndria

√Obtenção de energia para a célula a partir diferentes fontes:


Fotossíntese e Respiração

Organismos Fotossintetizantes

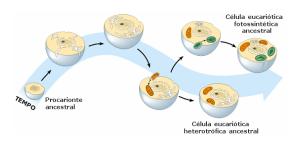
Eucarioto – Algas e Plantas

Presença de organela especializada: Cloroplasto

Organismos Fotossintetizantes

Procariotos

Ex:Cianobactérias



Cloroplastos e outros palstídeos

Origem dos clorolastos

- √ Teoria do Endossimbionte
- ✓ Eucarioto Fotossintetizante: 2 eventos de endossinbiose

√ Hatena arenicola e seu Endossimbionte Nephroselmis

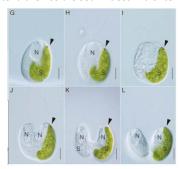
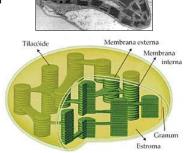
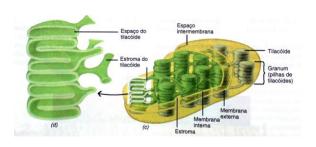
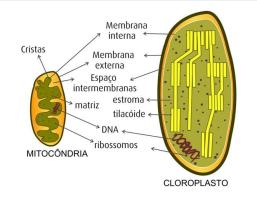



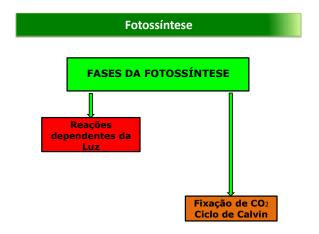
Figure 1. Nations are vision gen. et sp. nov. A. Ventral view of a symbiont-bearing cell showing two flaggists and an eyeapor of the symbiotic flavorheads (B, CS seming) sets. D. The same cell in a different local plane, showing two rows of conspicuous Type I ejectionnes. E. A cell lacking the symbion. E. A. Cell with an "immature" symbion. CB.-Cl dictions in Futher arrowing, where the arrowhead inclustes an eyeaport of the symbion. Each panel shows a different individual at a different stage in cell division. Nit nucleus. St Symbiont. The scale bare it Yourn in A. D.-C.

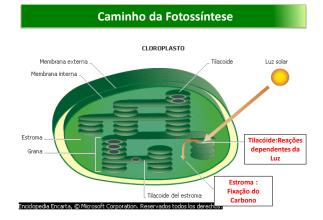
Protist, Vol. 157, 401 – 419, August 2006 http://www.ebevier.de/protis e. Published online date 7 August 2006


Estrutura dos Cloroplastos

- ✓ Membrana Externa
- ✓ Membrana Interna
- ✓ Estroma
- ✓ Tilacóides
- √ Grana

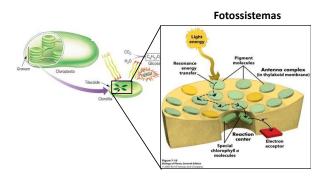

Cloroplasto: 3 Compartimentos

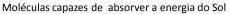

✓ Espaço Intermembrana, Estroma e Espaço do Tilacóide

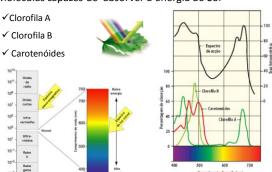


Cloroplasto Estrona Tilacóide do Estroma Tilacóides do grana

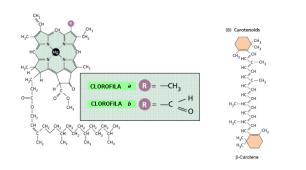
Mitocôndria X Cloroplasto



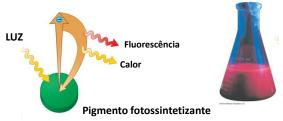



Reações Luminosas: Membrana do Tilacóides

Presença de Pigmentos Fotossintetizantes



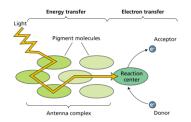
Pigmentos Fotossintéticos


Pigmentos Fotossintéticos

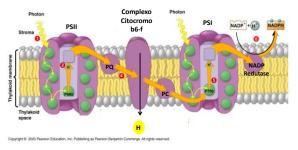
Caminho da Energia

- Pigmentos fotossintetizantes energizados
- ❖ Estado energizado → Estado original
- Transferência de energia, Liberação de Calor, Fluorescência ou

transferência de elétron

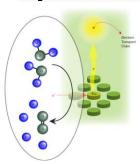

Fotossistemas

- ✓ Complexo Antena: captura a energia da Luz
- ✓ Centro de Reação: sítio onde a energia da Luz pode ser utilizada

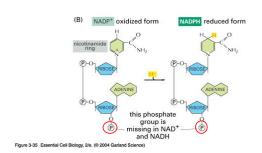

Dois Tipos de Fotossistemas

- ✓ Fotossistem I (PSI) : Absorve na faixa de 700 nm
- ✓ Fotossistema II (PSII): Absorve na faixa de 680nm
- ✓ Diferem quanto ao doador de elétrons

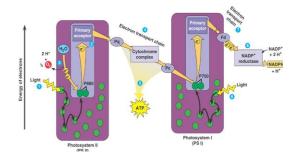
Fotosistema I e II


✓ PSI e PSII : Conectados pela Cadeia Transportadora de Elétrons

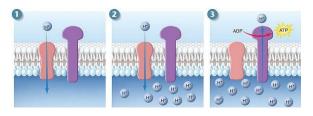
PQ: Palstoquinona PC: Plastocianina


Fotossistema II: Fotólise da água

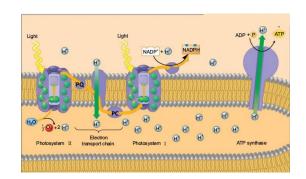
2H₂0 → 4ē + 4H+ + O₂


Carreador energético

* NADPH: Nicotinamida adenina dinucleotídeo fosfato

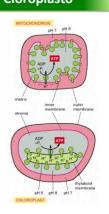

Fluxo de Elétrons: da Água ao NADP+

- ✓ PSII: doa elétrons para PSI e recebe da Oxidação da Água
- ✓ PSI: doa elétrons para NADP recebe elétrons de PSII

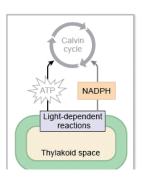


Cloroplasto e Mitocôndria

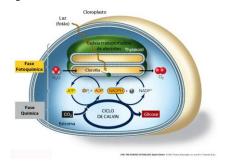
- ✓ Produção de Energia: Baseado em Membranas
- ✓Síntese de ATP :acoplado ao transporte de elétrons.

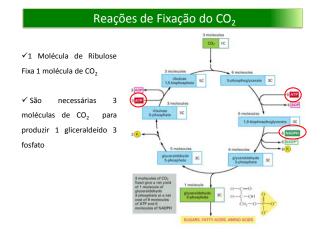


Síntese de ATP


Mitocôndria X Cloroplasto

- ✓Mitocondria:
- -Espaço Intermembrana: ↑ H+
- -Síntese de ATP para a Matriz.
- ✓Cloroplasto:
- -Síntese de ATP para o Estroma


NADPH e ATP para o Estroma.


✓ Reações Luminosas: ATP, NADPH e O₂

Reações de Fixação do CO₂

- ✓Ocorrem no Estroma
- ✓Utiliza a Energia Produzida na Fase Luminosa

