

Universidade de São Paulo Escola de Engenharia de Lorena-EEL

LISTA AULA 6: ÁLGEBRA LINEAR

Mudança de Base e Transformações Lineares.

Professor: Juan Fernando Zapata Zapata

Data:23 de setembro de 2015

- 1. Se $B = \{(5,3,1), (1,-3,2), (1,2,1)\}\$ e $E = \{(-2,1,0), (-1,3,0), (-2,-3,1)\}\$ são bases de \mathbb{R}^3 , calcule a matriz de Mudança de Base da base E para a base B. Se as coordenadas de um vetor v na base Esão $v = (1,1,1)_E$, calcular as coordenadas do vetor v na base B.
- 2. Se $B = \{1, x, x^2, x^3\}$ e $E = \{x, -x^2, x^2 2, x^3 3\}$ são bases de $\mathbb{P}_3[x]$, calcule a matriz de Mudança de Base da base E para a base B. Se $p(x) = x^3 - 2x + 1$, calcular as coordenadas do vetor p(x) na base E.
- 3. Se $B = \{1, x, x^2, x^3\}$, $E = \{-1, 2x^2, -x + 1, x^3 + x^2\}$ e $F = \{\pi, x \pi, x^2 + \pi^2 x + \pi, \pi x^3\}$ são bases de $\mathbb{P}_3[x]$, calcule a matriz de Mudança de Base da base E para a base B, de F para E. Determine as coordenadas dos vetores 1, x, x^2 , (x-1)(x-2) e $(x^2 + \pi x)(1-2x)$ nas bases F e E.
- 4. Se $B = \{(1,0,1), (1,1,0), (0,0,1)\}$ e $E = \{u_1, u_2, u_3\}$ são bases de \mathbb{R}^3 e $\begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}$ é a matriz de mudança da base B para a base E, calcular os vetores da base E.
- 5. Se $B = \{(1,0,-1),(-1,1,0),(1,1,1)\}$ é uma base do \mathbb{R}^3 e $v = (6,-3,2) \in \mathbb{R}^3$ calcular as coordenadas de v na base B. Se $w = (6, -3, 2)_B$, calcular w na base canônica do \mathbb{R}^3 .
- 6. Determine quais das seguintes funções sao transfotmações lineares e quais não, se for prove e se não for justifique porque.

a.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (1 + x, y)$.

e.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x, y) = (x^2, y)$.

b.
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T(x,y,z) = (x+y+z,1)$. f. $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x,y) = (2x-y,x)$.

f.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (2x - y, x)$.

c.
$$T: \mathbb{R} \to \mathbb{R}^2$$
, $T(x) = (1, -1)$.

g.
$$T : \mathbb{R}^3 \to \mathbb{R}^3$$
, $T(x,y) = (xy,y,x)$.

d.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (x - y, 0)$.

h.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x,y) = (\sin x, y)$.

- 7. Existe alguma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,-1,0)=(1,0) e T(1,1,1)=(0,1)? se sim dé uma expressão para T.
- 8. Se $T: \mathbb{R} \to \mathbb{R}$ é uma transformaão linear e T(3) = -4 calcule T(-7).
- 9. Se $T: \mathbb{R}^2 \to \mathbb{R}^2$ é uma transformaão linear, T(1,1) = 3 e T(1,0) = 4 calcule T(5,3).
- 10. Seja $S: \mathbb{R}^4 \to \mathbb{R}^4$ dada por S(x,y,z,w) = (0,x,y,z). Verifique que S é uma Transformação linear e calcule $S^2 = S \circ S$, S^3 , S^4 e S^{2015} .

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena-EEL

- 11. Se $S, T : \mathbb{R}^3 \to \mathbb{R}^3$ são definidas por S(x,y,z) = (y,z,x) e T(x,y,z) = (x+y+z,0,0), provar que S e T são transformações lineares e calcular S+T e $S\circ T$.
- 12. A função P(x,y,z)=(x,y,0) projeta todo vetor do espaço no plano xy. Prove que P é uma transformação linear e $P^2=P\circ P=P$.
- 13. Seja $S : \mathbb{R}^3 \to \mathbb{R}^3$ definida por $S(x, y, z) = \frac{1}{3}(x 2y 2z, -2x + y 2z, -2x 2y + z)$.
 - a. Prove que *S* é uma transformação linear.
 - b. Prove que S(x,y,z) = (x,y,z) para todo $(x,y,z) \in \Pi = \{(x,y,z) : x + y + z = 0\}.$
 - c. Calcule S(1,1,1) e Prove que ||S(x,y,z)|| = ||(x,y,z)||.
 - d. Prove que $S \circ S = I$ e conclua de todos os itens acima que S é uma reflexão em relação ao plano Π .
- 14. Seja \vec{u} um vetor não nulo. Provar que a projeção sobre \vec{u} proj $_{\vec{u}}$: $\mathbb{R}^3 \to \mathbb{R}^3$ definida por $\operatorname{proj}_{\vec{u}}(\vec{v}) = \frac{\vec{u}.\vec{v}}{||\vec{u}||^2}\vec{u}$ é uma transformação linear e satisfaz $\operatorname{proj}_{\vec{u}}^2 = \operatorname{proj}_{\vec{u}} \circ \operatorname{proj}_{\vec{u}} = I$.
- 15. Se $S, T : \mathbb{R}^2 \to \mathbb{R}^2$ são definidas por S(x, y, z) = (y 2x, x + y) e T(x, y, z) = (x y, 2x + y)
 - a. Provar que S e T são transformações lineares
 - b. Calcular $S \circ T(1,0)$, $T \circ S(1,0)$, $S \circ S(1,0)$, $S \circ S(1,0)$, $T \circ T(1,0)$ e 2T S(1,0).
 - c. *S* e *T* são conmutativos?
 - d. Para quais vetores $(x,y) \in \mathbb{R}^2$, T(x,y) = (1,0)?
- 16. Seja \mathcal{M}_n é o espaço vetorial das matrizes de ordem n e $B \in \mathcal{M}_n$. Se $T : \mathcal{M}_n \to \mathcal{M}_n$ é definida por T(A) = AB BA, prove que T é uma transformação linear.
- 17. Se $A \in \mathcal{M}_n$ podemos definir uma transformação linear $T_A : \mathbb{R}^n \to \mathbb{R}^n$ como $T_A(X) = AX^T$. Prove que T é uma transformação linear.
- 18. Um caso particular de uma transformação linear como a do item anterior são as rotações no plano. Uma rotação por um ângulo θ do plano é a transformação linear $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$R_{\theta}(x,y) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- a. Calcule $R_{\frac{\pi}{3}}(1,0), R_{\frac{\pi}{2}}(1,0), R_{\frac{5\pi}{6}}(1,0)$ e $R_{\frac{\pi}{3}} \circ R_{\frac{\pi}{2}}(1,0)$.
- b. Prove que $R_{\theta} \circ R_{\delta} = R_{\delta} \circ R_{\theta} = R_{\theta+\delta}$.