

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena-EEL

LISTA AULA 4: ÁLGEBRA LINEAR

SUBESPAÇO GERADO, LI E LD.

Professor: Juan Fernando Zapata Zapata

Data:1 de setembro de 2015

1. Para cada um dos conjuntos dados em \mathbb{R}^3 , determinar o subespaço gerado e decidir quais são linearmente independente e quais linearmente dependentes:

a.
$$E = \{(1,1,1), (0,1,0), (1,0,1)\}.$$

b.
$$E = \{(1,1,1), (1,1,0), (1,0,0)\}.$$

c.
$$E = \{(1,1,1), (1,1,0), (1,0,1)\}.$$

2. Para cada um dos conjuntos dados em $\mathbb{P}_3[x]$, determinar o subespaço gerado e decidir quais são linearmente independente e quais linearmente dependentes:

a.
$$E = \{1, x, x^2\}.$$

b.
$$E = \{1 + x, 1 - x, x^2, x^2 + x\}.$$

c.
$$E = \{x^2 - 1, x + 1, x^2 - x, x^2 + x\}.$$

d.
$$E = \{x - x^2, x^2 - x\}$$
.

e.
$$E = \{1, 1 - x, 1 - x^2\}.$$

3. Quais dos seguintes conjuntos de vetores no espaço vetorial das funções contínuas $\mathcal{C}(-\infty,\infty)$ são linearmente independente e quais linearmente dependentes:

a.
$$E = {\cos x, \sin x, \sin(x + \frac{\pi}{2})}.$$

b.
$$E = \{\sin x, \sin 2x, \sin 3x\}$$
.

c.
$$E = {\cos x, \cos 2x, \cos 3x}$$
.

d.
$$E = \{\sin x, \sin 2x, \cos x, \cos 2x\}$$
.

4. Prove que o conjunto $\{u, v, w\}$ é linearmente independente se, e somente se $\{u + v, w - u - v, u + v + w\}$ é linearmente independente.

5. Seja \mathcal{U} o subespaço gerado pelo conjunto $E = \{(1,1,0,0,1), (1,1,0,1,1), (0,1,1,1,1), (2,1,-1,0,1)\}$ no \mathbb{R}^5 . E é um conjunto linearmente independente de \mathbb{R}^5 ? encontrar um subconjunto $F \subset E$ linearmente independente tal que $gerF = \mathcal{U}$

6. Seja \mathcal{U} o subespaço gerado pelo conjunto $E = \{x^3, x^3 - x^2, x^3 + x^2, x^3 - 1\}$ em $\mathbb{P}_3[x]$. E é um conjunto linearmente independente de $\mathbb{P}_3[x]$? encontrar um subconjunto $F \subset E$ linearmente independente tal que $gerF = \mathcal{U}$

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena-EEL

- 7. Seja \mathcal{U} o subespaço gerado pelo conjunto $E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ no $M_{2\times 2}$. E é um conjunto linearmente independente de $M_{2\times 2}$? Determinar \mathcal{U} .
- 8. Seja $\mathcal U$ o subespaço gerado pelo conjunto $E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ no $M_{2\times 2}$. E é um conjunto linearmente independente de $M_{2\times 2}$? Determinar $\mathcal U$.
- 9. Utilize a idéia dos dois exercícios anteriores para encontrar bases para os subespaços das matrizes simétricas e Antisimétricas de ordem 3.
- 10. Mostrar que o conjunto de vetores em \mathbb{R}^3 {(1,0,0),(0,1,0),(0,0,1),(1,1,1)} é linearmente dependente, mas que qualquer subconjunto com 3 elementos é linearmente independente.
- 11. Seja V um espaço vetorial e A, B, C, $D \in V$. Provar que $E = \{A + B + C$, 2A + 2B + C D, A B C, $A C + D\}$ é um conjunto Linearmente dependente. Encontrar um subconjunto de E linearmente dependente com o maior número de vetores possíveis
- 12. Prove que o conjunto $\{u,v,w\}$ é linearmente independente se, e somente se $\{u+v,w-u-v,u+v+w\}$ é linearmente independente.
- 13. Suponha que o conjunto $\{u, v, w\}$ é linearmente independente e considere o vetor t = au + bv + cw, mostre que $\{u + t, u + v, w + t\}$ é linearmente independente se, e somente se $a + b + c \neq -1$.
- 14. Provar que o conjunto de polinômios $E = \{x^2, x^2 + 1\}$ é é um conjunto linearmente independente em $\mathbb{P}_2[x]$. Qual é o subespaço gerado por E? $gerE = \mathbb{P}_2[x]$? se não, encontrar um vetor em $\mathbb{P}_2[x]$ que não pertence a gerE, e mostrar que adicionando este vetor em E o conjunto vira uma base de $\mathbb{P}_2[x]$.