UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena-EEL

LISTA AULA 2: ÁLGEBRA LINEAR

MATRIZ INVERSA

Professor: Juan Fernando Zapata Zapata Data:20 de agosto de 2015

1. Em cada caso é dada a matiz A. Descobrir se A^{-1} existe e neste caso determinar A^{-1} .

$$A = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix}, A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 2 \end{pmatrix}, A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

2. Seja
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

a. Provar usando operacções entre linhas que A é inversível se e somente se $ad-cb\neq 0$ e neste

caso
$$A^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

b. Determine
$$A^{-1}$$
 se $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

3. em cada caso determine a matriz A, se:

a.
$$(3A)^{-1} = \begin{pmatrix} 1 & 0 \\ -5 & -1 \end{pmatrix}$$
. b. $(2A^T - 3I)^{-1} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$.

4. Se
$$A^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 3 \end{pmatrix}$$
 determinar a matriz X e Y tal que a. $AX = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{pmatrix}$. b. $YA = \begin{pmatrix} 2 & 3 & -1 \\ -1 & 0 & 5 \end{pmatrix}$

5. Determine se as seguintes afirmações são verdadeiras ou falsas, justifique sua resposta com uma prova caso seja verdadeira e com um contra-exemplo se for falsa.

a. Se
$$AB = 0$$
 então não existem A^{-1} nem B^{-1} .

b. Se
$$A \neq 0$$
 então A^{-1} existe.

c. Se
$$A^3 = I$$
 então existe A^{-1} .

d. Se
$$A^2 = A$$
 então existe A^{-1} .

e. Se
$$A^2$$
 é inversível então existe A^{-1} .

f. Se
$$A^2 = 0$$
 então $I - A$ é inversível.

g. Se
$$A^3 = 0$$
 então $I - A$ é inversível.

h Se
$$A^n = 0$$
 então $I - A$ é inversível.

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena-EEL

- 6. Considere a matriz $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$. Calcule N_1^2 . N_1 é inversível? $I N_1$ é inversível? se a resposta for afirmativa calcule a inversa.
- 7. Considere a matriz $N_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Calcule N_2^3 . N_2 é inversível? $I N_2$ é inversível? se a resposta for afirmativa calcule a inversa.
- 8. Considere a matriz quadrada de ordem n+1, $N=\begin{pmatrix}0&1&0&\dots&0&0\\0&0&2&\dots&0&0\\\vdots&\dots&&\vdots\\0&0&0&0&\dots&n\\0&0&0&0&0\end{pmatrix}$. Calcule N^{n+1} . N é inversível? se a resposta for afirmativa calcule a inversa.
- 9. Prove que se A é uma matriz tal que $A^n=0$ então I-A é inversível e $(I-A)^{-1}=I+A+A^2+A^3+\ldots+A^{n-1}$
- 10. A primeira matriz do exercicio 1 sugere que se $A = \begin{pmatrix} 1 & \frac{1}{2} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \dots & \frac{1}{n+2} \\ \vdots & & \dots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \dots & \frac{1}{2n-1} \end{pmatrix}$, então A^{-1} possui elementos inteiros. Você poderia provar este fato?