

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena-EEL

LISTA : GEOMETRIA ANALÍTICA

VARIOS

Professor: Juan Fernando Zapata Zapata Data:6 de Outubro de 2015.

1. Num objeto *P* agem três forças como mostra a seguinte figura. Calcule a força necessaria para impedir o movimento de *P*

- 2. Se \vec{u}, \vec{v} e \vec{z} representam os vetores da figura acima e são tais que $||\vec{u}|| = 3, ||\vec{v}|| = 2$ e $||\vec{z}|| = 4$, escrever \vec{z} como combinação linear de \vec{u} e \vec{v} .
- 3. Sobre um corpo agem duas forças $\vec{f_1}$ e $\vec{f_2}$ num mesmo ponto. A força $\vec{f_1}$ é de 25N na direção de 60° em relação à horizontal. Se a força resultante \vec{f} é de 30N e sua direção é de 40° em relação à horizontal, determinar $\vec{f_2}$.
- 4. A velocidade de um barco em relação a agua é de 20Km/h em direção norte num lugar onde a corrente é de 5Km/h em relação a terra na direção 60° Sul. Encontre a velocidade do barco em relação a terra.
- 5. sejam A(4,0,1), B(5,1,3), C(3,2,5) e D(2,1,3) pontos do espaç em coordenadas cartesianas. Prove que A, B, C e D são os vértices de um paralelogramo.
- 6. sejam O(0,0), A(a,b) e B(c,d) pontos do plano em coordenadas cartesianas. Prove que O, A e B são os vértices de um triângulo equilátero, se e somente se

$$a^2 + b^2 = c^2 + d^2 = 2(ac + cd).$$

- 7. Se três retas se cortam num ponto em comum dizemos que são concorrentes. Prove que três retas $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ e $a_3x + b_3y + c_3 = 0$ são concorrentes se e somente se $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$
- 8. Sejam $A = (a_1, b_1)$, $B = (a_2, b_2)$, $C = (a_3, b_3)$ pontos no plano coordenado. Prove que a área do tiângulo ABC é $\pm \frac{1}{2} \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix}$ e conclua que A, B e C são colineares se e somente se $\begin{vmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{vmatrix} = 0$