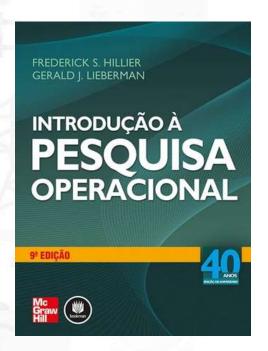

Pesquisa Operacional II


Prof. Fabrício Maciel Gomes
Departamento de Engenharia Química
Escola de Engenharia de Lorena – EEL

Referências Bibliográficas

Sistema de Avaliação

Duas Provas teóricas Um Trabalho em Grupo

 $M\acute{e}diaFinal = 0, 4 \cdot P1 + 0, 4 \cdot P2 + 0, 2 \cdot Trabalho$

P1 – 22 de setembro de 2016

P2 – 24 de novembro de 2016

Recuperação – 15 de dezembro de 2016

PERT/CPM

Projeto POLARIS (Década de 50)

Este projeto envolvia a participação de 250 grandes empresas e 9.000 empresas sub-contratadasdiferentes. Além de milhares de peças comuns já usadas em outros projetos, nada menos que 70.000 novos tipos de peças diferentes tinham que ser fabricadas.

PERT/CPM

Embora os problemas técnicos fossem difíceis, o maior de todos era controlar todo o projeto, dado o gigantesco número de atividades a serem realizadas, principalmente porque havia grande pressão de se fazer o projeto no menor tempo possível.

Com a finalidade de controlar o projeto, foi desenvolvido por uma equipe mista da Lockheed, Booz Allen e Marinha dos E.Unidos um sistema para controle de projetos que recebeu o nome de PERT (Program Evaluation and Review Technique). Poderíamos traduzir por Técnica de Avaliação e Controle de Projetos. O projeto Polaris teve sua duração reduzida dos 5 anos previstos para apenas 3. Grande parte desta redução foi atribuída ao uso do PERT.

PERT/CPM

Na mesma época (1957) a Dupont apresentou um sistema de controle de Projetos, similar ao PERT, mas tendo como enfoque principal o controle dos custos de um projeto. O nome dado a este sistema era CPM (**C**ritical **P**ath **M**ethod) ou Método do Caminho Crítico em português.

O sucesso do PERT no projeto Polaris e do CPM na Dupont, provocaram a partir de 1960, uma "corrida" ao uso destas ferramentas que passaram a ser conhecidas pela sigla PERT/CPM. Com o passar dos anos o nome CPM deixou de ser usado e o uso deste tipo de técnica passou a ser conhecida como Rede PERT.

Pode-se dizer, sem medo de errar, que este tipo de ferramenta é usada pela maioria das empresas de médio e grande porte.

Construção da Rede

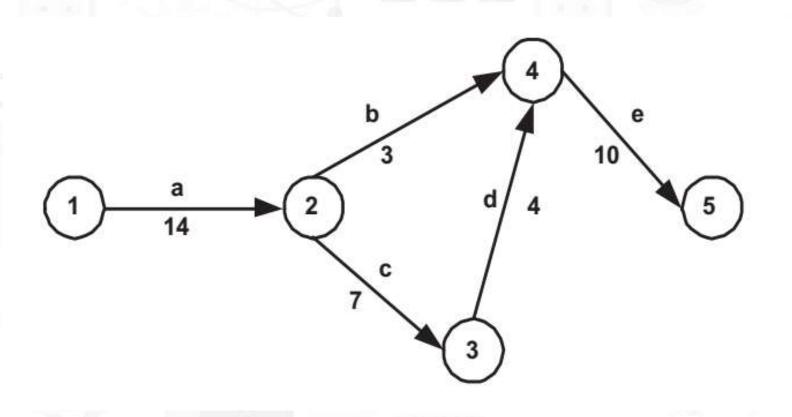
ATIVIDADE: É a execução efetiva de uma operação. São consumidos tempo e recursos. Ex: Assistir aula de P.Operacional, fazer uma laje de concreto, etc...

EVENTO: É um marco que caracteriza um determinado instante em um projeto. Não são consumidos tempo ou recursos. Ex: Início da aula de P.Operacional, fim da aula de P.Operacional, início de fazer a laje de concreto, etc...

Para se construir a rede PERT de um determinado projeto precisamos conhecer:

- a) As atividades, ou seja, a lista de tarefas que compõem o projeto.
- b) A ordem das atividades, isto é, quais as atividades antecedentes e quais as subsequentes à cada atividade.
- c) A duração prevista para cada atividade.

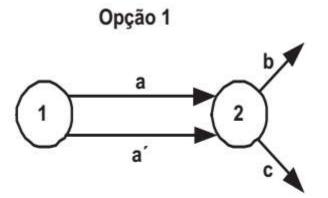
OBS: No caso do CPM, precisamos conhecer também o custo de cada atividade.

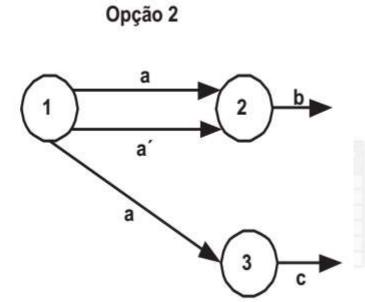

Construção da Rede

Exemplo: Vamos imaginar que a área financeira de uma pequena empresa, que produz e vende determinado produto, precisa fazer a previsão orçamentária para o próximo exercício fiscal. Como a confecção deste orçamento envolve áreas diferentes da empresa, foi decidido usar o PERT para controle e acompanhamento do projeto. As atividades do projeto bem como a interdependência entre elas além da suas durações, está mostrado na tabela a seguir:

Identificação	Atividade	Duração em dias	Antecessoras Imediatas
a	Previsão das unidades a serem vendidas	14	-
b	Determinar o preço de venda do produto	3	a
С	Levantar material necessá- rio na produção	7	a
d	Levantar custos de produção	4	c
е	Fazer o Orçamento	10	b, d

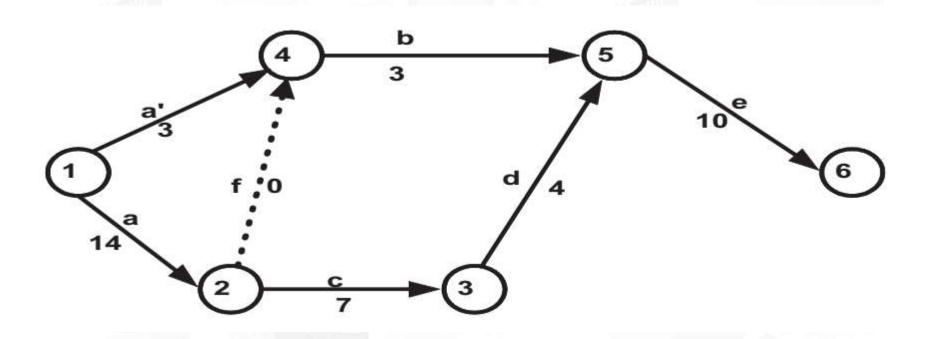
Construção da Rede




Complicação na Construção da Rede

Identificação	Atividade	Duração em dias	Antecessoras Imediatas
a	Previsão das unidades a serem vendidas	14	(=
a'	Estudar preço dos concorrentes	3	11—
b	Determinar o preço de venda do produto	3	a, a'
c	Levantar material necessá- rio na produção	7	а
d	d Levantar custos de produção		c
e	Fazer o Orçamento	10	b, d

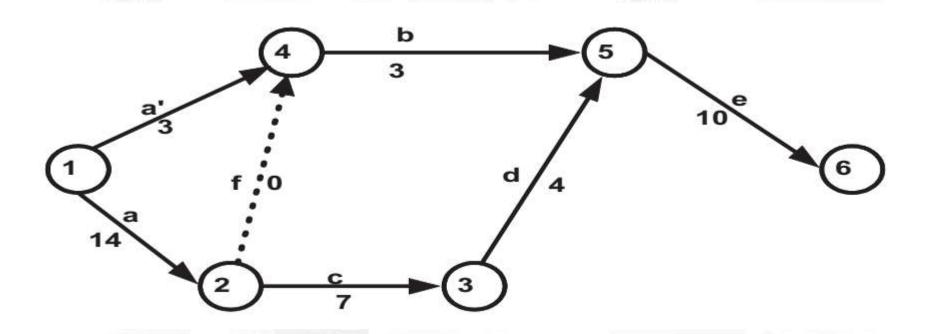
Complicação na Construção da Rede



Complicação na Construção da Rede

Atividade Fantasma

Caminho Crítico: é o caminho mais longo percorrido pela rede para a finalização de um projeto


Data de Início do projeto: É a data em que o projeto inicia. Como teremos que fazer contas com datas, o que é trabalhoso e enfadonho, vamos trabalhar com datas absolutas. Desta forma, daqui para a frente, esta data será sempre igual a **0**.

Data mais cedo de início de uma atividade: É a data mais cedo possível em que uma atividade pode começar. Em inglês é usada a sigla E.S, que é a abreviação de *Early Start*.

Data mais cedo de fim de uma atividade: É a data mais cedo em que uma atividade pode acabar. Em inglês é usada a sigla E.F, que é a abreviação de Early Finish.

Retomando o Exemplo

		Data mais cedo		Data mais tarde		Folga
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14					
1 - 4	3					
2-4	0					
2-3	7					
4 - 5	3					
3 - 5	4					
5 - 6	10					

		Data mais cedo		Data mais tarde		Folga
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14	0	14			
1 - 4	3	0	3			
2 - 4	0	14	14			
2-3	7	14	21			
4 - 5	3					
3 - 5	4					
5 – 6	10					

		Data mais cedo		Data mais tarde		Folga
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14	0	14			
1 - 4	3	0	3			
2 - 4	0	14	14			
2-3	7	14	21			
4 - 5	3	14	17			
3 - 5	4	21	25			
5 - 6	10					

		Data mais cedo		Data mais tarde		Folga
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14	0	14			
1-4	3	0	3			
2-4	0	14	14			
2-3	7	14	21			
4 - 5	3	14	17			
3 - 5	4	21	25			
5 – 6	10	25	35			

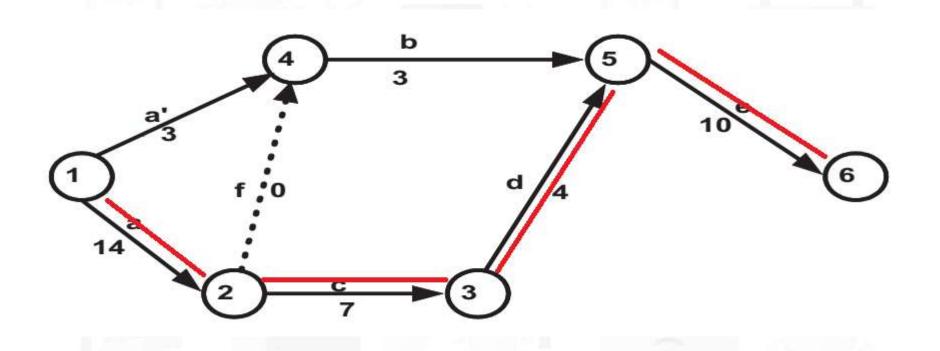
Data mais tarde de início de uma atividade: É a data mais tarde em que uma atividade pode começar sem comprometer a duração do projeto. Em inglês é usada a sigla L.S, que é a abreviação de *Latest Start*.

Data mais tarde de fim de uma atividade: É a data mais tarde em que uma atividade pode acabar sem comprometer a duração do projeto. Em inglês é usada a sigla L.F, que é a abreviação de *Latest Finish*.

		Data mais cedo		Data mais tarde		Folga
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14	0	14			
1 - 4	3	0	3			
2-4	0	14	14			
2-3	7	14	21			
4 - 5	3	14	17	22	25	
3 - 5	4	21	25	21	25	
5 - 6	10	25	35	25	35	

		Data mais cedo		Data mais tarde		Folga
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14	0	14			
1 - 4	3	0	3	19	22	
2-4	0	14	14	22	22	
2-3	7	14	21	14	21	
4 - 5	3	14	17	22	25	
3 - 5	4	21	25	21	25	
5 - 6	10	25	35	25	35	

		Data mais cedo		Data m	Folga	
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14	0	14	0	14	
1 - 4	3	0	3	19	22	
2-4	0	14	14	22	22	
2 - 3	7	14	21	14	21	
4 - 5	3	14	17	22	25	
3 - 5	4	21	25	21	25	
5 – 6	10	25	35	25	35	


Folga Total é quanto uma atividade pode ser atrasada sem atrasar a data de fim do projeto.

		Data m	ais cedo	Data m	Folga	
Atividade	Duração	Inicio	Fim	Inicio	Fim	Total
1-2	14	0	14	0	14	0
1 - 4	3	0	3	19	22	19
2-4	0	14	14	22	22	8
2-3	7	14	21	14	21	0
4 - 5	3	14	17	22	25	8
3 - 5	4	21	25	21	25	0
5 - 6	10	25	35	25	35	0

As atividades com folga total igual a zero são as chamadas atividades críticas e formam o chamado caminho crítico.

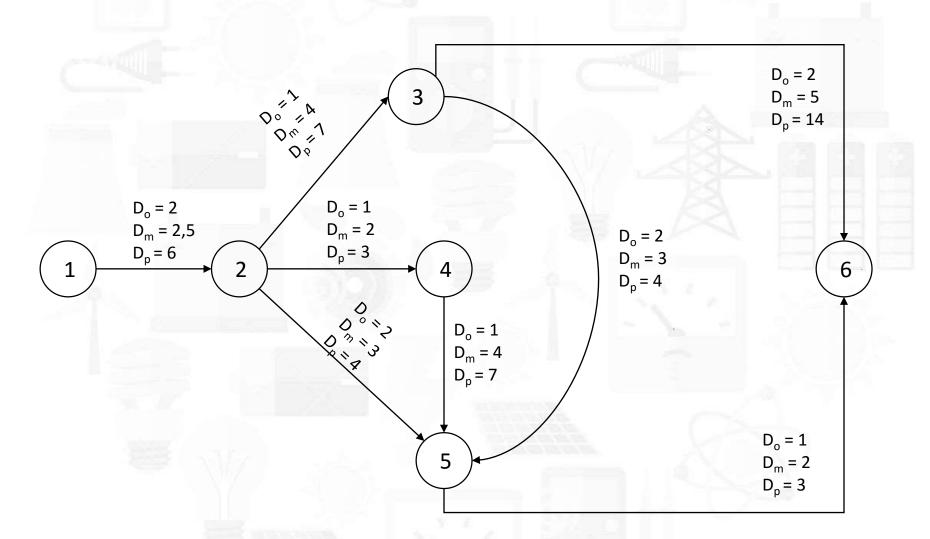
Qualquer atraso em uma dessas atividades implicará em atraso na duração do projeto.

D₀ ⇒ Duração Otimista, ou seja, a duração mais provável se a execução da atividade não tiver nenhum problema. Em termos estatísticos, é uma estimativa para o limite inferior da distribuição de probabilidade da duração da atividade.

D_p ⇒ Duração Pessimista, ou seja, a duração mais provável se a execução da atividade tiver problemas. Em termos estatísticos, é uma estimativa para o limite superior da distribuição probabilística.

 $D_m \Rightarrow$ Duração Mais Provável, ou seja, a duração provável se a execução da atividade for realizada em condições normais. É uma estimativa para a moda (ponto mais alto) da distribuição de probabilidade.

Estudos realizados indicaram que a Distribuição Beta era a que melhor se adaptava às durações reais da maioria das atividades de um grande número de projetos examinados.


Podemos resumir então a premissa básica do modelo PERT: A duração de uma atividade é uma variável aleatória que segue a chamada Distribuição Beta que tem os seguintes parâmetros:

$$M\acute{e}dia = Duração Esperada (D_e) = \frac{D_o + 4 \cdot D_m + D_p}{6}$$

$$Vari\hat{a}ncia = \sigma^2 = \left(\frac{D_p - D_o}{6}\right)^2$$

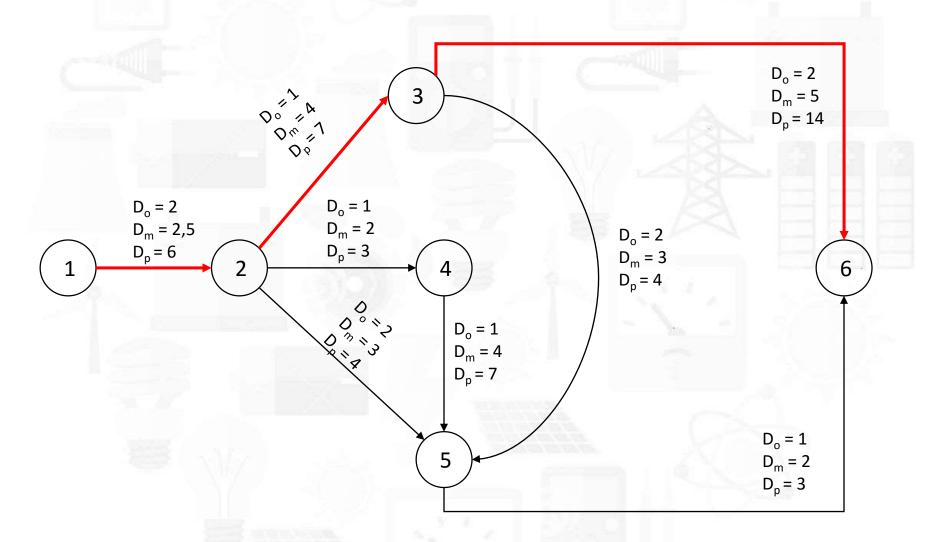
Exemplo:

	Dur	ação ((dias)
Atividade	D_o	D_m	D_p
1 - 2	2	2,5	6
2 - 3	1	4	7
2 - 5	2	3	4
2 - 4	1	2	3
4 - 5	1	4	7
3 - 5	2	3	4
5 - 6	1	2	3
3 - 6	2	5	14

Y	Dur	ação (
Atividade	D_o	D_m	D_p	D_e	σ^2
1 - 2	2	2,5	6	3	0,444
2 - 3	1	4	7	4	1
2 - 5	2	3	4	3	0,111
2 - 4	1	2	3	2	0,111
4 - 5	1	4	7	4	1
3 - 5	2	3	4	3	0,111
5 - 6	1	2	3	2	0,111
3 - 6	2	5	14	6	4

		Data mais cedo		Data mais tarde		Folga
Atividade	D_e	Inicio	Fim	Inicio	Fim	Total
1-2	3	0	3	0	3	0
2 - 3	4	3	7	3	7	0
2 - 5	3	3	6	8	11	5
2-4	2	3	5	5	7	2
4 - 5	4	5	9	7	11	2
3 - 5	3	7	10	8	11	1
5 – 6	2	10	12	11	13	1
3 – 6	6	7	13	7	13	0

Duração esperada do projeto:


$$D_{ep} = 13 dias$$

 σ^2 = Variância do projeto = $\sum \sigma^2$ das atividades do caminho crítico

$$\sigma^2 = 5,444$$

Caminho Crítico:

Considerando que a duração de uma atividade é independente da duração de cada uma das outras atividades do projeto, ou seja, a variável aleatória "duração da atividade" é uma variável aleatória independente, temos que a duração esperada do projeto (D_{ep}) é a soma das durações das atividades do caminho crítico, ou seja é a soma de variáveis aleatórias independentes.

Pelo teorema do Limite Central, uma variável aleatória que é a soma de variáveis aleatórias, segue a Distribuição Normal.

Desta forma, no modelo PERT, a duração do projeto é uma variável aleatória que segue a Distribuição Normal com:

$$M\acute{e}dia = \mu = D_{ep}$$

Desvio Padrão =
$$\sigma = \sqrt{\sigma^2}$$

No nosso exemplo:

$$\mu = 13$$

$$\sigma = \sqrt{5,444} = 2,333$$

Respondendo outros tipos de perguntas:

- Qual a probabilidade do projeto demorar mais de 14 dias?

$$Z = \frac{x - \mu}{\sigma} = \frac{14 - 13}{2,333} = 0,43$$

$$Pr(duração > 14) = 0,5-0,1664 = 0,3336$$

A probabilidade do projeto demorar mais de 14 dias é de 33,36%

- Qual deve ser a duração do projeto para que o risco do não cumprimento do Prazo seja de 5%?

$$Pr(Duração > x) = 0.05$$

$$Pr(Duração < x) = 0,45$$

$$1,645 = \frac{x - 13}{2,333} = 16,97 dias$$

Problemas do Modelo PERT

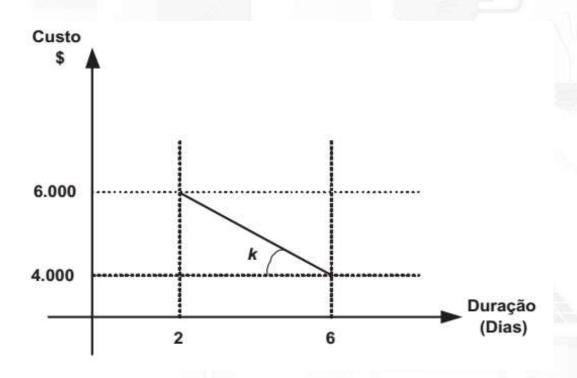
- 1) Estimar, com precisão, durações para atividades de um projeto não é, via de regra, tarefa das mais simples. Estimar 3 durações para cada atividade é, obviamente, uma tarefa muito mais difícil.
- 2) O postulado básico no qual o modelo PERT está baseado, ou seja de que as atividades de um projeto são independentes entre si, é difícil de ser justificado. O mais comum em um projeto é a execução de uma atividade acabar influenciando a execução de outras.

Problemas do Modelo PERT

- 3) O outro postulado do modelo PERT de que as durações das variáveis seguem uma distribuição beta tem sido contestado, com inúmeros exemplos já publicados.
- 4) Pela própria natureza do modelo PERT, um caminho crítico pode deixar de ser crítico se, por exemplo, as atividades de um outro caminho começarem, por algum problema, a serem executadas na duração pessimista. Como os resultados, por exemplo a duração esperada do projeto, foram calculados em cima do caminho crítico "original", os resultados teriam que ser todos recalculados.

O Modelo CPM

Como visto anteriormente, o enfoque principal do CPM é controlar os custos do projeto. Está baseado na ideia de que se colocarmos mais recursos na execução de uma atividade, conseguiremos fazê-la mais rapidamente, embora aumentando o seu custo.


É usado em projetos onde a duração das atividades é conhecida com bastante precisão, como projetos de construção civil, por exemplo. No CPM, para cada atividade, são feitas 2 estimativas de duração que estão associadas a 2 custos:

- a) Duração Normal (D_n) , que tem associado o chamado Custo Normal (C_n) .
- b) Duração Acelerada (D_a), que tem associado o chamado Custo Acelerado (C_a).

Relações entre Duração/Custo

Seja, por exemplo, uma atividade cuja duração normal é de 6 dias com custo normal de \$4.000. Vamos supor que sua duração acelerada seja de 2 dias e seu custo acelerado seja de \$6.000.

Coeficiente angular

$$\tan k = \frac{C_a - C_n}{D_n - D_a}$$

$$\tan k = \frac{6000 - 4000}{6 - 2}$$

$$\tan k = 500$$

Vamos ver o uso do modelo CPM aplicado a um projeto cujos dados estão a seguir:

	Duração	(semanas)	Cus	sto (\$)
Atividade	Normal	Acelerada	Normal	Acelerado
1 – 2	6	3	4.000	5.000
1 – 3	6	2	4.000	6.000
2 - 4	7	5	4.000	6.000
3 - 4	5	2	4.000	6.000
2 – 5	5	3	3.000	6.000
4 - 5	9	6	5.000	10.000
4 – 6	6	4	3.000	6.000
5 – 7	4	1	2.000	5.000
6 – 7	2	1	2.000	4.000

Podemos calcular para cada atividade o seu Custo Incremental:

Atividade	Custo Incremental $(C_a - C_n)/(D_a - D_n)$
1-2	333
1-3	500
2 - 4	1.000
3 – 4	667
2-5	1.500
4 – 5	1.667
4-6	1.500
5 – 7	1.000
6 – 7	2.000

Usando a duração/custo normal, construímos o quadro PERT:

		Data m	ais cedo	Data m	ais tarde	Folga
Atividade	Dur	Inicio	Fim	Inicio	Fim	Total
1-2	6	0	6	0	6	0
1-3	6	0	6	2	8	2
2-4	7	6	13	6	13	0
3 – 4	5	6	11	8	13	2
2-5	5	6	11	17	22	11
4-5	9	13	22	13	22	0
4-6	6	13	19	18	24	5
5 – 7	4	22	26	22	26	0
6 – 7	2	19	21	24	26	5

Duração = 26 semanas

Caminho Crítico: (1-2), (2-4), (4-5), (5-7)

Custo = \$31.000

No processo precisaremos das seguintes definições:

 Δt = número de unidades de tempo que a atividade ainda pode ser reduzida.

Folga Mínima = É a menor folga diferente de zero que aparece no quadro PERT.

Atividade	Custo Incremental	Δt
1 – 2	333	3
2 - 4	1.000	
4 – 5	1.667	
5 – 7	1.000	

Como podemos observar, a atividade (1-2) é a mais barata para ser acelerada. Surge então a pergunta: Quanto podemos acelerar (1-2)? O máximo que pode ser acelerado é o mínimo entre o Δt da atividade e a Folga Mínima.

Logo o máximo que podemos acelerar (1 - 2) é:

 $Min(\Delta t, Folga Mínima) = Min(3, 2) = 2 semanas.$

Calculando o quadro PERT com a nova duração de (1 - 2) temos:

		Data m	ais cedo	Data m	ais tarde	Folga
Atividade	Dur	Inicio	Fim	Inicio	Fim	Total
1-2	4	0	4	0	4	0
1-3	6	0	6	0	6	0
2-4	7	4	11	4	11	0
3 – 4	5	6	11	6	11	0
2-5	5	4	9	15	20	11
4-5	9	11	20	11	20	0
4-6	6	11	17	16	22	5
5 – 7	4	20	24	20	24	0
6 – 7	2	17	19	22	24	5

Duração: 24 semanas

Caminhos Críticos: (1-2)(2-4)(4-5)(5-7)

(1-3)(3-4)(4-5)(5-7)

Custo = $31.000 + 2 \times 333 = 31.666

Agora temos 2 caminhos críticos. Para diminuir a duração do projeto temos q reduzir o comprimento dos 2 caminhos críticos.

Atividade	Custo Incremental	Δt
(1-2)(1-3)	333 + 500 = 833	1 e 4
(1-2)(3-4)	333 + 667 = 1.000	
(2-4)(1-3)	1.000 + 500 = 1.500	
(2-4)(3-4)	1.000 + 667 = 1.667	
(4 - 5)	1.667	
(5 - 7)	1.000	

Min [Δt de (1–2), Δt de (1–3), Folga Mínima]= Min(1,4,5) = 1 semana.

Atividade D		Data mais cedo		Data mais tarde		Folga
	Dur	Inicio	Fim	Inicio	Fim	Total
1-2	3	0	3	0	3	0
1-3	5	0	5	0	5	0
2 - 4	7	3	10	3	10	0
3 – 4	5	5	10	5	10	0
2-5	5	3	8	14	19	11
4-5	9	10	19	10	19	0
4 – 6	6	10	16	15	21	5
5 – 7	4	19	23	19	23	0
6 - 7	2	16	18	21	23	5

Duração: 23 semanas

Caminhos Críticos: (1-2)(2-4)(4-5)(5-7)

(1-3)(3-4)(4-5)(5-7)

Custo = $31.666 + 1 \times 833 = 32.500

Atividade	Custo Incremental	Δt
(2-4)(1-3)	1.000 + 500 = 1.500	
(2-4)(3-4)	1.000 + 667 = 1.667	
(4 - 5)	1.667	
(5 - 7)	1.000	3

		Data m	ais cedo	Data m	ais tarde	Folga
Atividade	Dur	Inicio	Fim	Inicio	Fim	Total
1-2	3	0	3	0	3	0
1-3	5	0	5	0	5	0
2-4	7	3	10	3	10	0
3 – 4	5	5	10	5	10	0
2-5	5	3	8	14	19	11
4-5	9	10	19	10	19	0
4 – 6	6	10	16	12	18	2
5 – 7	1	19	20	19	20	0
6 – 7	2	16	18	18	20	2

Duração: 20 semanas

Caminhos Críticos: (1-2)(2-4)(4-5)(5-7)

(1-3)(3-4)(4-5)(5-7)

Custo = $32.500 + 3 \times 1.000 = 35.500

Atividade	Custo Incremental	Δt
(2-4)(1-3)	1.000 + 500 = 1.500	2 e 3
(2-4)(3-4)	1.000 + 667 = 1.667	
(4 - 5)	1.667	

		Data m	ais cedo	Data m	ais tarde	Folga
Atividade	Dur	Inicio	Fim	Inicio	Fim	Total
1-2	3	0	3	0	3	0
1-3	3	0	3	0	3	0
2 - 4	5	3	8	3	8	0
3 – 4	5	3	8	3	8	0
2-5	5	3	8	12	17	9
4-5	9	8	17	8	17	0
4-6	6	8	14	10	16	2
5 – 7	1	17	18	17	18	0
6 – 7	2	14	16	16	18	2

Duração: 18 semanas

Caminhos Críticos: (1-2)(2-4)(4-5)(5-7)

(1-3)(3-4)(4-5)(5-7)

Custo = $35.500 + 2 \times 1.500 = 38.500

Atividade	Custo Incremental	Δt
(4 - 5)	1.667	3

		Data mais cedo		Data mais tarde		Folga
Atividade	Dur	Inicio	Fim	Inicio	Fim	Total
1-2	3	0	3	0	3	0
1-3	3	0	3	0	3	0
2-4	5	3	8	3	8	0
3 – 4	5	3	8	3	8	0
2-5	5	3	8	10	15	7
4 – 5	7	8	15	8	15	0
4 – 6	6	8	14	8	14	0
5 – 7	1	15	16	15	16	0
6 – 7	2	14	16	14	16	0

Duração: 16 semanas

Caminhos Críticos:
$$(1-2)(2-4)(4-5)(5-7)$$

$$(1-2)(2-4)(4-6)(6-7)$$

$$(1-3)(3-4)(4-5)(5-7)$$

$$(1-3)(3-4)(4-6)(6-7)$$

Custo =
$$38.500 + 2 \times 1.667 = $41.833$$

Atividade	Custo Incremental	Δt
(4-5)(4-6)	1.667 + 1.500 = 3.167	1 e 2
(4-5)(6-7)	1.667 + 2.000 = 3.667	

		Data mais cedo		Data mais tarde		Folga
Atividade	Dur	Inicio	Fim	Inicio	Fim	Total
1-2	3	0	3	0	3	0
1-3	3	0	3	0	3	0
2-4	5	3	8	3	8	0
3 – 4	5	3	8	3	8	0
2-5	5	3	8	9	14	6
4 – 5	6	8	14	8	14	0
4 – 6	5	8	13	8	13	0
5 – 7	1	14	15	14	15	0
6 – 7	2	13	15	13	15	0

Duração: 15 semanas

Caminhos Críticos:
$$(1-2)(2-4)(4-5)(5-7)$$

$$(1-2)(2-4)(4-6)(6-7)$$

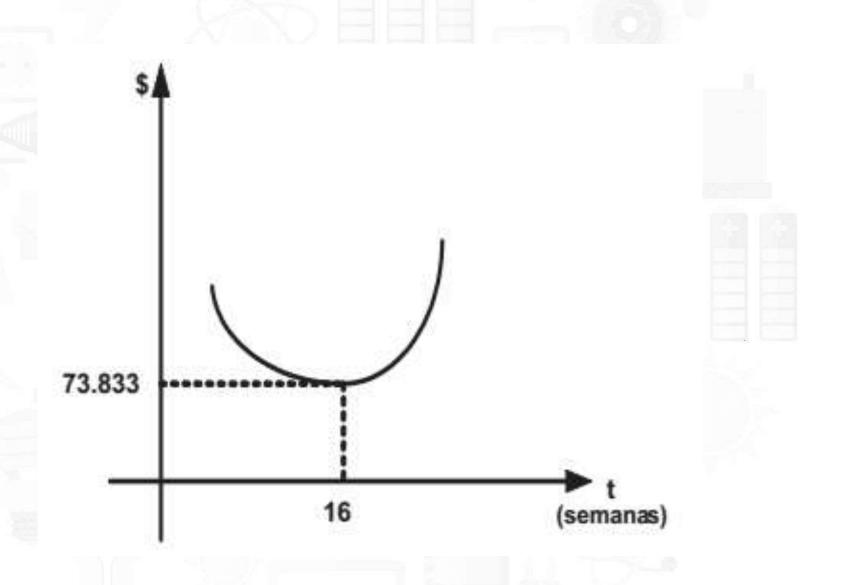
$$(1-3)(3-4)(4-5)(5-7)$$

$$(1-3)(3-4)(4-6)(6-7)$$

Custo = $41.833 + 1 \times 3.167 = 45.000

Vamos ver o uso do modelo CPM aplicado a um projeto cujos dados estão a seguir:

	Duração	(semanas)	Custo (\$)		
Atividade	Normal	Acelerada	Normal	Acelerado	
1 – 2	6	3	4.000	5.000	
1 – 3	6	2	4.000	6.000	
2 - 4	7	5	4.000	6.000	
3 - 4	5	2	4.000	6.000	
2 – 5	5	3	3.000	6.000	
4 – 5	9	6	5.000	10.000	
4 – 6	6	4	3.000	6.000	
5 – 7	4	1	2.000	5.000	
6 – 7	2	1	2.000	4.000	


Duração Ótima para o Projeto

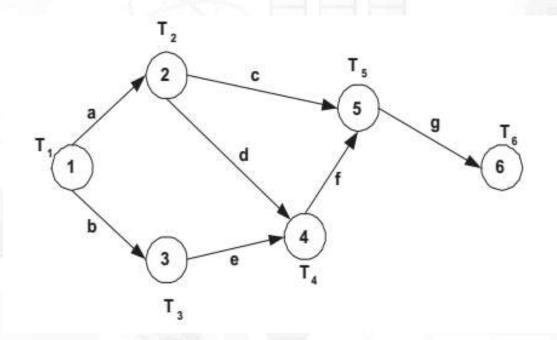
Exemplo: Vamos supor que no exemplo visto até aqui, os custos indiretos sejam de \$2.000 por semana, existindo ainda uma multa contratual de \$2.000 por semana que o projeto passar de 20 semanas.

Duração	Custos			Custo
(semanas)	Diretos	Indiretos	Multa	total
26	31.000	52.000	12.000	95.000
24	31.666	48.000	8.000	87.666
23	32.500	46.000	6.000	84.500
20	35.500	40.000	-	75.500
18	38.500	36.000	-	74.500
16	41.833	32.000	_	73.833
15	45.000	30.000	_	75.000

Duração Ótima para o Projeto

Exemplo:

	Duração	(semanas)	Custo (\$)	
Atividade	Normal	Acelerada	Normal	Acelerado
1 – 2 (a)	14	6	1.400	3.200
1 – 3 (b)	12	8	1.000	4.000
2 - 5 (c)	18	14	1.600	3.000
2 – 4 (d)	6	4	800	4.000
3 – 4 (e)	4	2	400	500
4 - 5 (f)	8	6	400	900
5 – 6 (g)	12	8	800	2.500
			6.400	



Atividade	Custo Incremental
1 – 2 (a)	225
1 – 3 (b)	750
2-5 (c)	350
2-4 (d)	1600
3-4 (e)	50
4-5 (f)	250
5-6 (g)	425

Duração	Custo
44 (Normal)	\$6.400
40	\$7.300
36	\$8.200
34	\$9.000
32	\$9.850
30	\$10.700
28	\$11.900

Definido as variáveis de decisão:

 T_i = datas em que ocorrem os eventos

 x_i = quanto a atividade *i* pode ser acelerada

Restrições:

$$x_a \leq 8$$

$$x_b \le 4$$

$$x_c \leq 4$$

$$x_d \leq 2$$

$$x_{e} \leq 2$$

$$x_f \le 2$$

$$x_g \leq 4$$

$$T_2 + x_a \ge 14$$

$$T_3 + x_b \ge 12$$

$$T_4 - T_2 + x_d \ge 6$$

$$T_4 - T_3 + x_e \ge 4$$

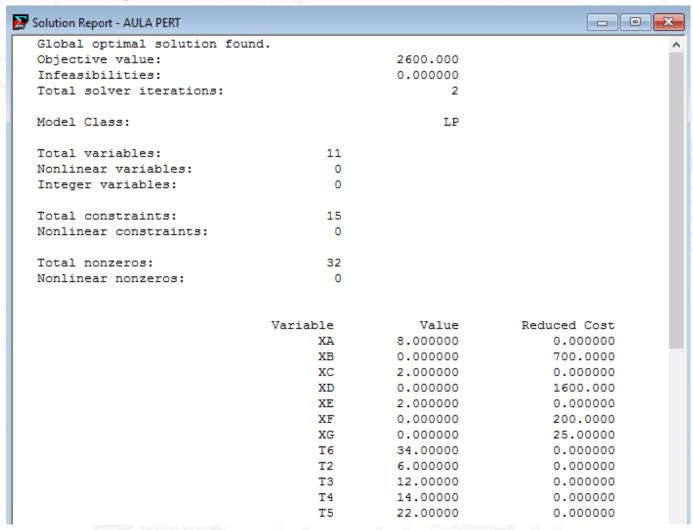
$$T_5 - T_2 + x_c \ge 18$$

$$T_5 - T_4 + x_f \ge 8$$

$$T_6 - T_5 + x_g \ge 12$$

Vamos supor que queremos encontrar o melhor custo para fazer o projeto em 34 semanas. Devemos colocar a restrição T_6 = 34.

Definindo a Função Objetivo:


$$(Min)Z = 225x_a + 750x_b + 350x_c + 1600x_d + 50x_e + 250x_f + 425x_g$$

Resolvendo pelo LINGO:

```
Lindo Model - AULA PERT
 MIN 225Xa + 750Xb + 350Xc + 1600Xd + 50Xe + 250Xf + 425Xq
 S.T.
 Xa < = 8
 Xb < = 4
 Xc<=4
 Xd < = 2
 Xe<=2
 Xf < = 2
 Xg <= 4
 T6 = 34
 T2+Xa>=14
 T3+Xb>=12
 T4-T2+Xd>=6
 T4-T3+Xe>=4
 T5-T2+Xc>=18
 T5-T4+Xf>=8
 T6-T5+Xq>=12
```


Resolvendo pelo LINGO:

