

Processos Químicos Industriais II

Produção de Etanol Total (hidratado-anidro), 2013/2014 - 2014/2015

Unidade: Mil m³

Estado/Safra	2013/2014	Comparação com 12/13 (%)
Acre	5	125
Alagoas	511	94,5
Amazonas	5	125
Bahia	174	112,3
Ceará	9	225
Espírito Santo	182	102,2
Goiás	3.879	123,9
Maranhão	168	105
Mato Grosso	1.104	113,2
Mato Grosso do Sul	2.231	116,4
Minas Gerais	2.657	133,2
Pará	38	115,2
Paraíba	339	111,1
Paraná	1.488	114,5
Pernambuco	317	116,5
Piauí	32	97,0
Rio de Janeiro	85	229,7
Rio Grande do Norte	57	79,2
Rio Grande do Sul	5	250
Rondônia	11	122,2
São Paulo	13.944	117,9
Sergipe	106	108,2
Tocantins	196	124,8
Região Centro-Sul	25.575	119,7
Região Norte-Nordeste	1.968	106,6
Brasil	27.543	118,7

Aplicações

- Combustível
- Bebidas alcoólicas
- Farmacêutico
- Cosméticos
- Tintas e Vernizes
- Alcoolquímica (polímeros)
- Outros usos

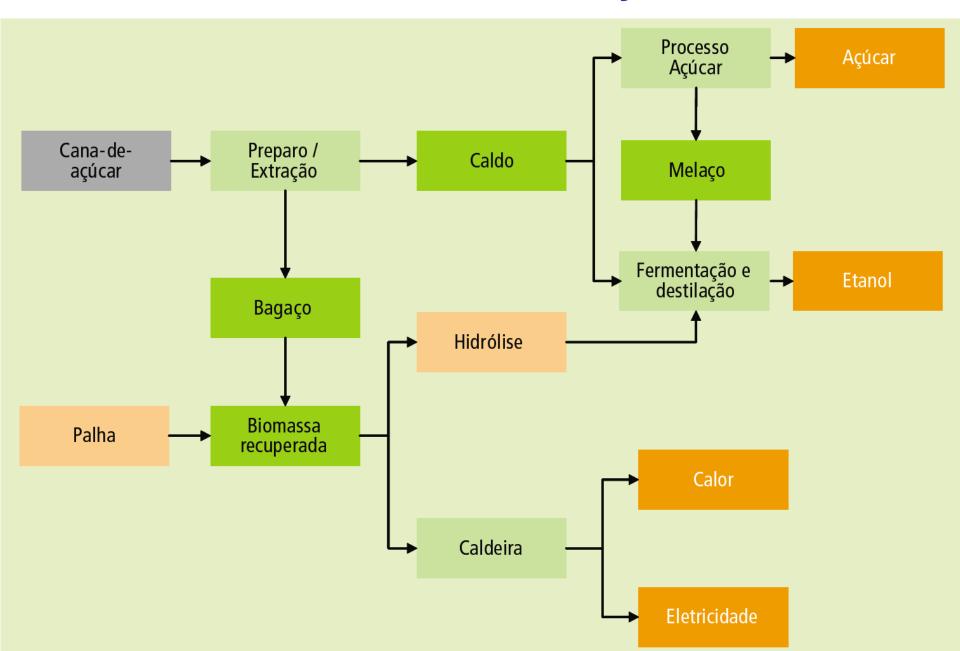
Álcool combustível

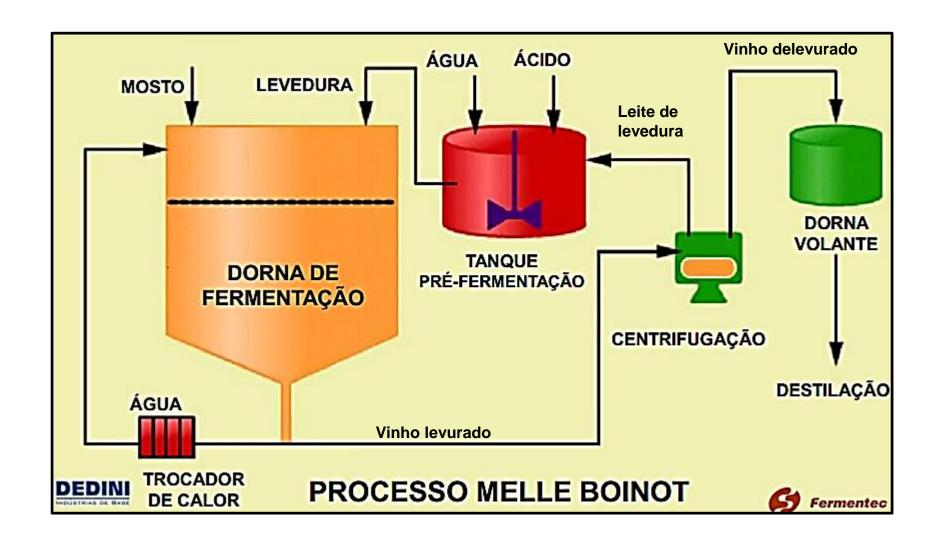
Etanol

- Hidratado carburante (93° INPM)
- Anidro carburante (99,3° INPM)

Grau INPM: porcentagem de álcool em peso em uma mistura hidro-alcoólica a temperatura padrão de 20,0°C

Como produzir?

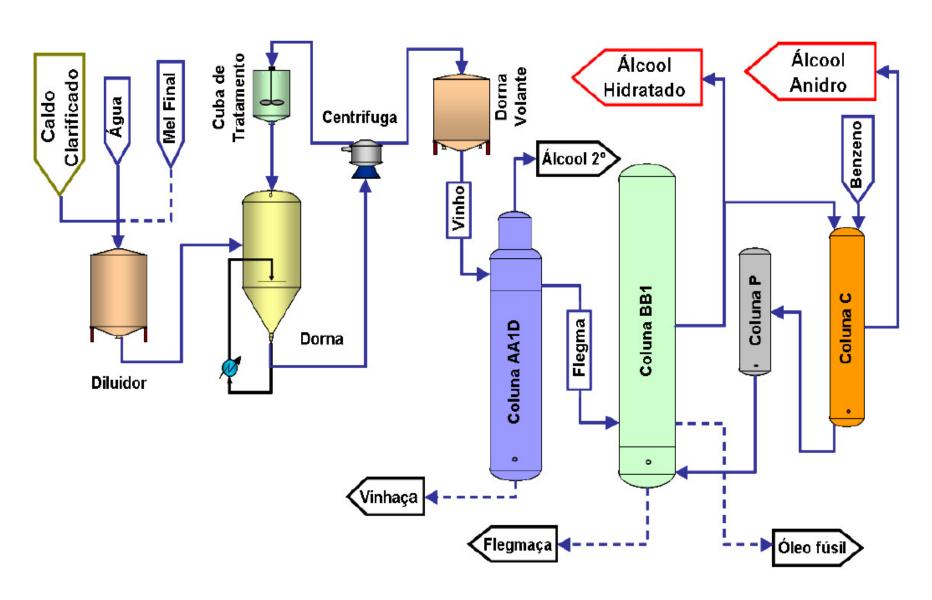

- Fermentação: açúcares fermentescíveis (glicose, frutose) a partir de dissacarídeos; polissacarídeos
- Destilação fracionada: mistura de compostos voláteis com diferentes pontos de ebulição


- 1- PLANTIO DA CANA
- 2- COLHEITA DA CANA
- 3- CHEGADA DA CANA-DE-AÇÚCAR
- 4- MOAGEM DA CANA-DE-AÇÚCAR
- 5- PRODUÇÃO DE AÇÚCAR

- 6- PRODUÇÃO DE ETANOL
- 7- ESTOCAGEM DO ETANOL
- **8- BIOELETRICIDADE**
- 9- PARTE ADMINISTRATIVA

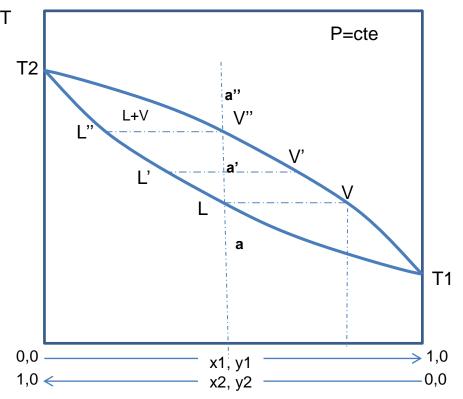
Cadeia de cana- de- açúcar

ETAPA DE FERMENTAÇÃO: Batelada



Caldo de cana fermentado (vinho)

Etanol



Fonte: Fábio Caltarosso – Dissertação UFSCAR 2008

Equilíbrio líquido vapor

Os pontos T₁ e T₂ são respectivamente as temperaturas de vaporização das substâncias puras 1 e 2 à pressão P. L,L',L": ponto de bolha, temperatura de ebulição. V,V',V": ponto de orvalho, temperatura de condensação

Aumento de temperatura de a para a", origina pontos de duas fases, líquido e valpor, em equilíbrio, mas de diferente composição, (LV), (L'-V') e (L"- V"). Neste fenêmeno se fundamenta a separação de componentes de uma mistura por destilação.

A representação geométrica do ELV (equilíbrio líquido vapor) costuma fazer-se em diagramas pressão composição (P, x, y) e (T, x, y) onde x e y designa a composição das fases líquida e gasosa em equilíbrio. Na Figura 1 apresenta-se um diagrama (T, x, y) esquemático de uma mistura binária.

Ao fornecer calor a uma mistura líquida, se promovermos a sua vaporização parcial, obtemos duas fases, uma líquida e outra de vapor, que têm composições diferentes.

A diferença de composição das duas fases resulta da diferença de volatilidades dos vários componentes da mistura líquida inicial.

Quanto maior for essa diferença entre as volatilidades (isto é, quanto mais diferente da unidade forem as volatilidades relativas) maior será a diferença de composição entre a fase líquida e vapor e, como tal, mais fácil será a separação por Destilação

Para uma fase vapor em equilíbrio com a fase liquida, a volatilidade relativa do componente mais volátil A em relação ao menos volátil B, se define pela relação:

$$\alpha_{AB} = (y_A/x_A)/(y_B/x_B)$$

y= fração molar na fase vapor

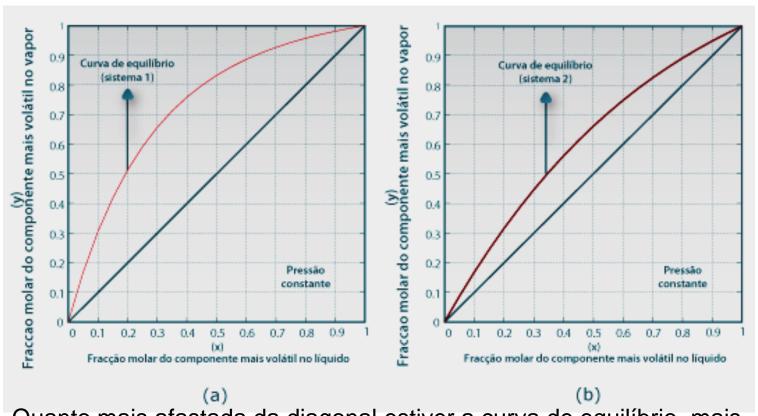
x= fração molar na fase líquido

Para sistemas binarios $y_B = 1-y_A$ $x_B = 1-x_A$

$$\alpha = y_A.x_B/y_B.x_A = y_A (1 - x_A)/x_A(1 - y_A) = y(1 - x)/x (1 - y)$$

$$\alpha = [y/(1-y)]/[(1-x)/x]$$

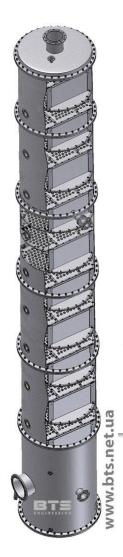
Se a fase liquida obedece a lei de Raoult e a fase vapor a lei de Dalton


$$y = P_A.x/P$$
 $1 - y = P_B (1 - x)/P$

Substituindo na equação anterior

$$\frac{\frac{P_A x}{P} \cdot \frac{(1-x)}{x}}{\frac{P_B (1-x)}{P}} = \frac{P_A}{P_B} = \alpha$$

A separação por destilação será tanto mais fácil quanto mais elevada (superior a 1) for a volatilidade relativa de A em relação a B.

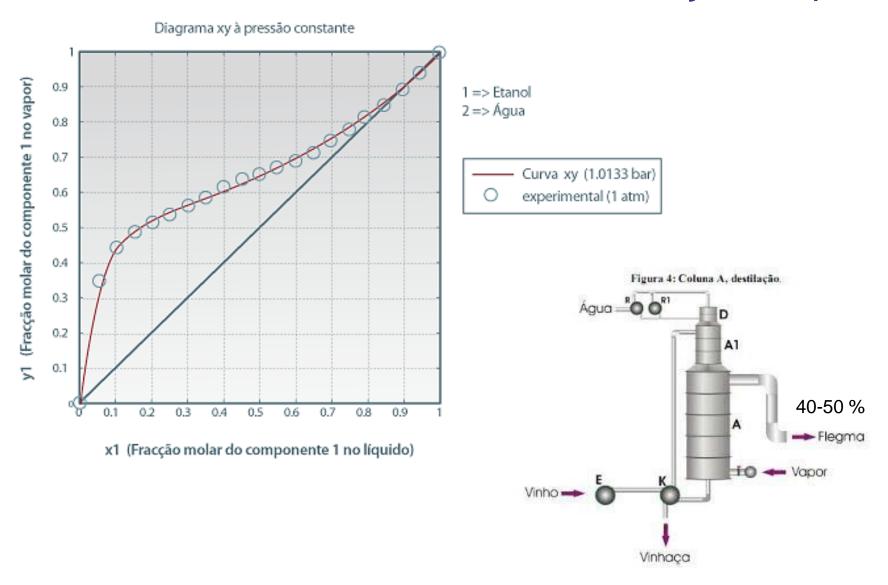

Equilíbrio líquido-vapor

Quanto mais afastada da diagonal estiver a curva de equilíbrio, mais fácil será separação por destilação. Na Figura 2 (a) a separação por destilação é mais fácil do que no caso (b).

Fonte: http://labvirtual.eq.uc.pt/

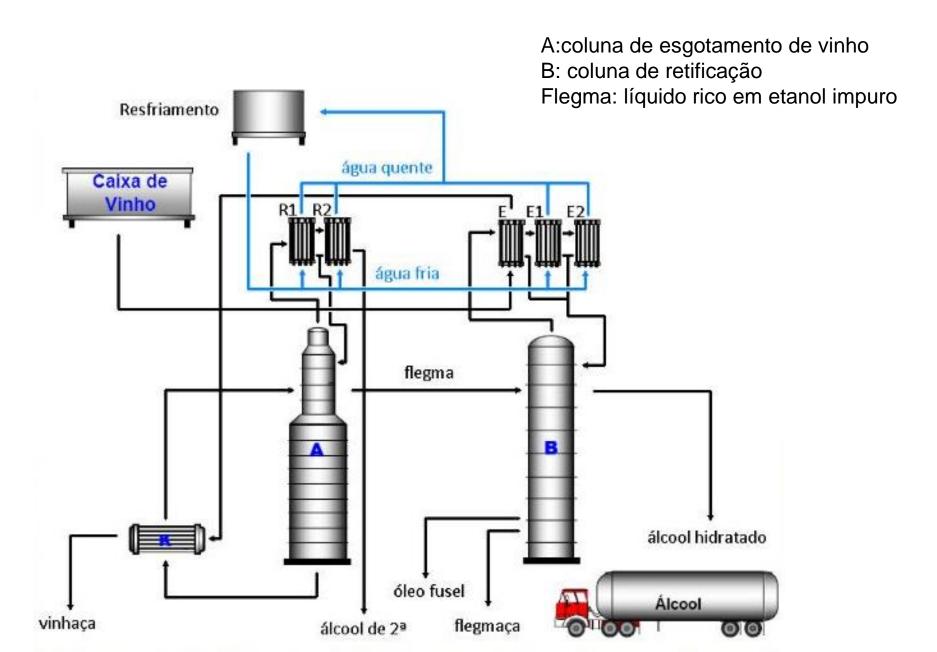
DESTILARIA

DESTILAÇÃO


É usada quando se deseja separar uma mistura em duas outras misturas, utilizando o calor como agente de separação. A mistura mais leve (mais volátil) é chamada de destilado, enquanto a mistura mais rica em componentes mais pesados (menos volátil) é chamado de resíduo ou produto de fundo.

PROCESSO DE DESTILAÇÃO COLUNA DE DESTILAÇÃO

COLUNA DE RETIFICAÇÃO

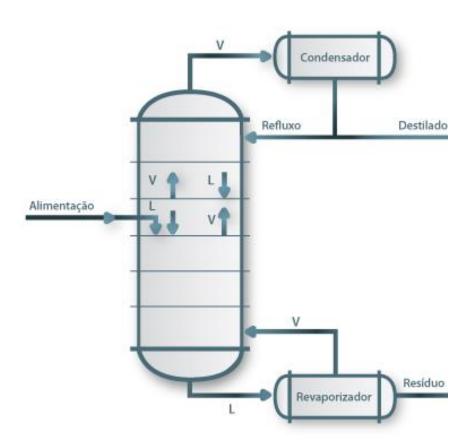

COLUNA DE DESIDRATAÇÃO

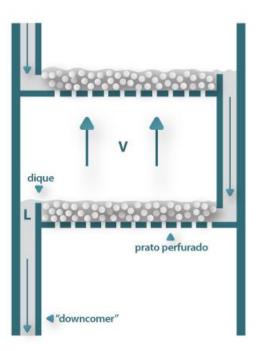
Destilação simples

Fonte: http://labvirtual.eq.uc.pt/

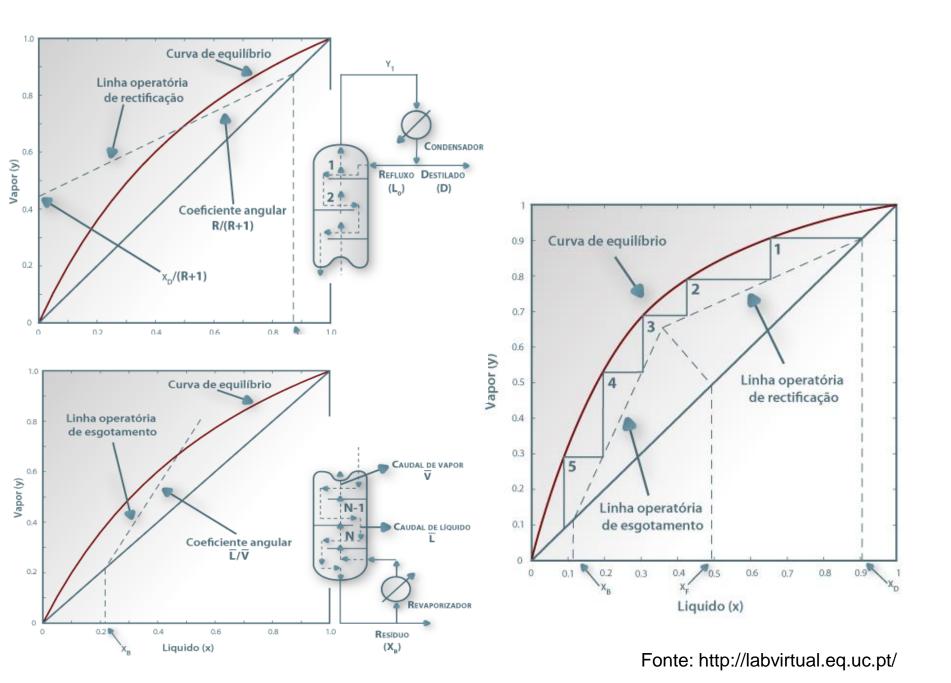
ÁLCOOL ETÍLICO HIDRATADO

Retificação

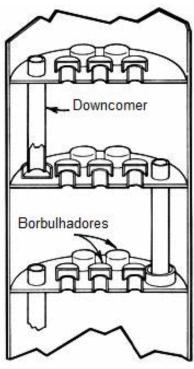

 Não se consegue fazer purificação completa do etanol por vários fatores:

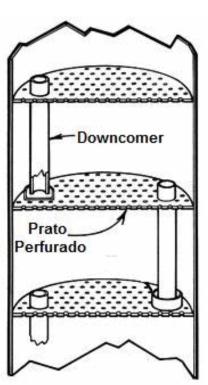

- a.marcha imperfeita,
- b.dificuldade de separar as cabeças,
- c.variação da temperatura
- d. pureza
- e.oscilações na composição dos vinhos
- f. reações de esterificação,

Para aumentar a concentração de etanol se recorre a uma coluna de retificação.

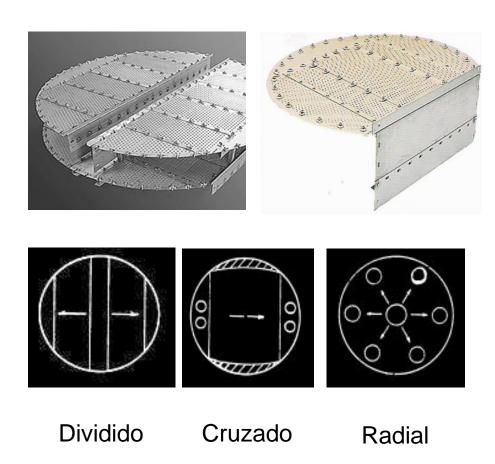


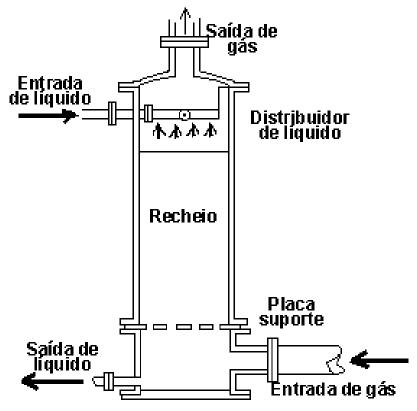
Retificação




Fonte: http://labvirtual.eq.uc.pt/

Pratos de destilação - Escoamento





Pratos de destilação - Escoamento

Colunas recheias de destilação - Recheios

Esquema de uma Torre de Recheio

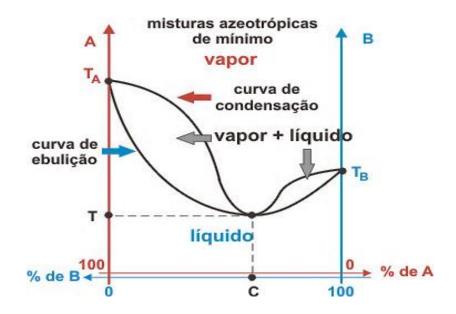
Desidratação do etanol

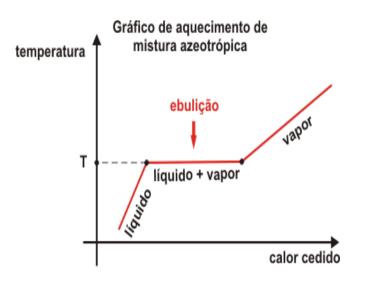
- Destilação: álcool 96% em volume mistura azeotrópica
- Processos industriais:
 - químicos substâncias que absorvem a água do álcool (óxido de cálcio, acetato de sódio, carbonato de potássio, ...)
 - físicos variação de pressão, destilação de misturas hiperazeotrópicas, absorção de vapores por corpos sólidos, destilação em presença de um terceiro componente, uso de absorventes regeneráveis e separação por membranas (peneiras moleculares)

Desidratação – Principais métodos

Destilação fracionada (retificação) comum não pode ser empregada para separar azeótropos e seu uso é antieconômico para a separação de componentes com pontos de ebulição muito próximos. Para separar etanol de 99,3 °GL deve se utilizar desidratação mediante:

Destilação azeotrópica com ciclo-hexano (ou benzeno)


Destilação extrativa com monoetilenglicol (MEG)


Adsorção em peneira molecular

Destilação azeotrópica

Um azeótropo é uma mistura líquida que, determinada uma pressão. para ebulição apresenta um ponto de constante que não varia com o grau de vaporização (tal como acontece com as substâncias puras). Como tal. do líguido e composição vapor em também eguilíbrio permanecem constantes.

Um exemplo comum é o da mistura etanol/água. Esta mistura apresenta um azeótropo para a composição de 96 % de etanol e 4 % de água (percentagens molares) à pressão atmosférica

É uma mistura que entra em ebulição a uma temperatura constante como se fosse uma substância pura

Desidratação azeotrópica

- Mais utilizada pelas destilarias (ciclo-hexano, benzeno)
- Formação de uma substância azeotrópica de 3 componentes
- 3º componente insolúvel em um dos 2 componentes iniciais – duas frações
- Destilação de líquidos mutuamente insolúveis temperatura de ebulição é inferior a dos dois componentes

Destilação azeotrópica

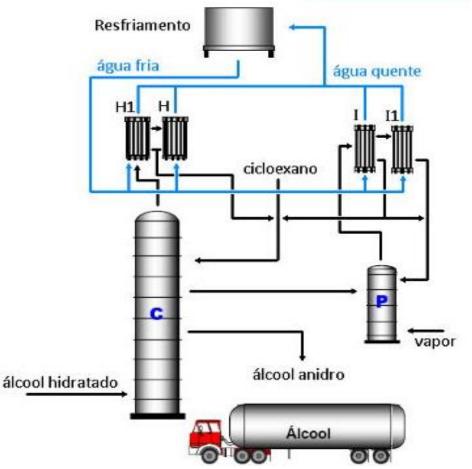
Nestas destilações, *um componente externo é usado para modificar a volatilidade relativa dos componentes de carga*, facilitando assim, sua separação.

Na destilação azeotrópica adiciona-se um componente volátil, que forma azeótropos de baixo ponto de ebulição com um ou mais componentes da mistura, aumentando a volatilidade relativa dos componentes.

Desidratação com Ciclo-Hexano

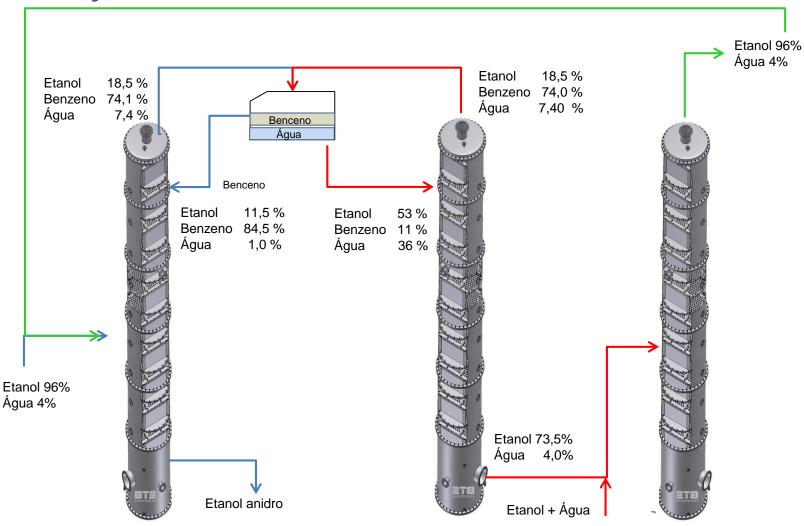
Utiliza uma coluna de desidratação, sendo o ciclo-hexano alimentado no topo da coluna e o álcool a ser desidratado alimentado a um terço abaixo do topo da coluna.

O ciclo-hexano tem a característica de formar com o álcool e a água uma mistura **ternária (azeótropo) com um ponto de ebulição de 63°C**. este menor ponto de ebulição da mistura em relação ao do álcool (78°C), faz com que a água seja retirada no topo da coluna.


Por condensação, esta mistura azeotrópica irá se separar em duas fases, sendo a fase inferior, mais rica em água, enviada para uma outra coluna onde ocorre a recuperação do ciclo-hexano, que retorna ao processo de desidratação.

O álcool anidro obtido, com um teor alcóolico em torno de 99,3% p/p, é retirado na parte inferior da coluna de desidratação, de onde é condensado e encaminhado para armazenamento

ÁLCOOL ETÍLICO ANIDRO

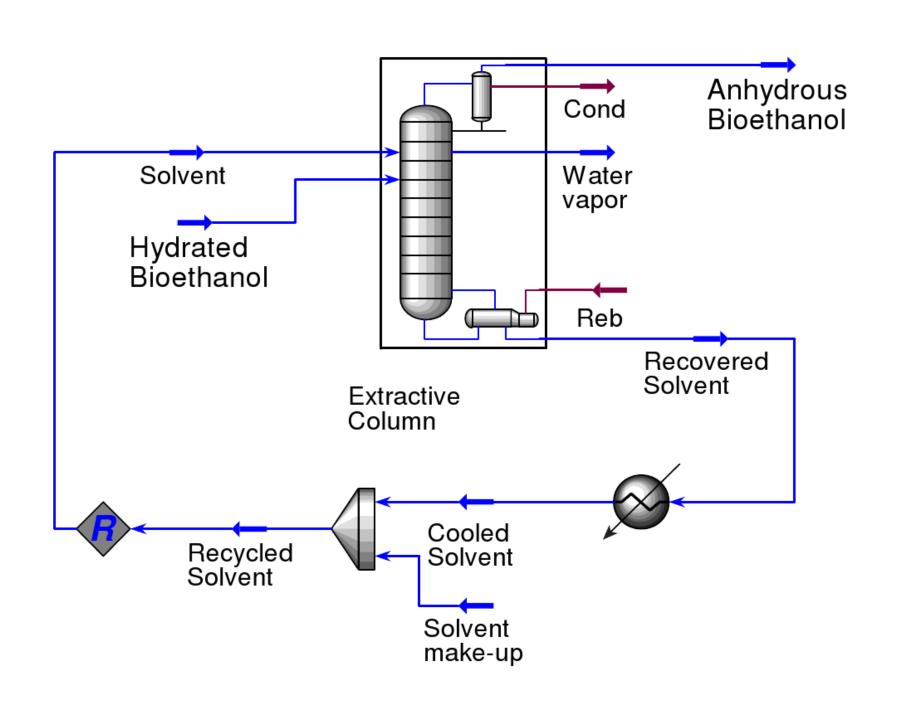

C: coluna de desidratação

P: coluna de recuperação de desidratante (ciclo-hexano)

- O álcool e a água formam um azeótropo, mistura com igual ponto de ebulição.
- Separar álcool de alta pureza (álcool anidro) adiciona-se ciclo-hexano, gerando um azeótropo ternário com o álcool e a água.
- No topo da coluna ainda sai 18,5% de etanol, e visando recuperar parte do desidratante para reutilizá-lo, a fração do topo é condensada e separada

Desidratação com benzeno

O método vem sendo substituído por outros ambientalmente seguros. A fase rica em benzeno retorna a coluna juntamente com adição de uma nova carga e a outra fase rica em água é injetada em uma segunda coluna de destilação, onde o destilado continua sendo um azeótropo ternário e é remetido ao separador de fases da primeira coluna, enquanto o produto de fundo, uma solução aquosa de etanol, é mandado para a coluna de destilação que produz o azeótropo binário etanol 96% e água 4%


Destilação extrativa, utilizando monoetilenoglicol (MEG)

Utiliza-se uma coluna de desidratação, onde o monoetilenoglicol (MEG) é alimentado no topo desta coluna e o álcool a ser desidratado também a um terço abaixo do topo da coluna.

Inversamente ao processo do ciclo-hexano, o MEG absorve e arrasta a água para o fundo da coluna e os vapores de álcool anidro saem pelo topo da coluna, de onde o álcool é condensado e enviado para armazenamento nos tanques.

A mistura contendo água, MEG e uma pequena quantidade de álcool, é enviada para uma coluna de recuperação do MEG, o qual retorna ao processo de desidratação.

Como o *MEG concentra as impurezas retiradas* do álcool e se torna mais corrosivo, é necessária a sua purificação pela passagem através de uma coluna de *resinas de troca iônica, que retém os sais e reduz a acidez*.

PENEIRAS MOLECULARES

Adsorção: transferência de massa (molécula) de um fluído (líquido ou gasoso) para uma superfície de uma fase sólida

Adsorvato: molécula ou soluto adsorvido

Adsorvente: sólido que mantém a molécula (adsorvato) na superfície por forças idênticas a forças de Van der Walls, que opera em estados líquido, sólido ou gasoso. Baseado em diferenças de dimensões moleculares, polaridades ou saturação de ligações.

Principais adsorventes

Carvão ativo (amorfo)
Sílica gel (amorfo)
Alumina ativada (amorfo)
Peneira molecular (cristalino, 21 kg H2O/100 kg Zeólita)

Principais aplicações

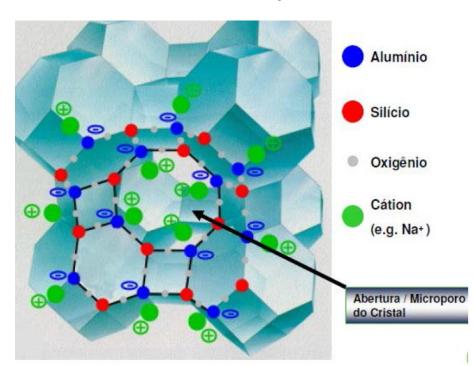
- Separação de parafinas de hidrocarbonetos (refinarias de petróleo)
- Produção de água ultrapura
- Adsorção de vapores orgânicos
- Recuperação de antibióticos de mostos fermentados
- Desidratação de biocombustíveis

Peneira molecular para desidratação de álcool

Zeólita artificial

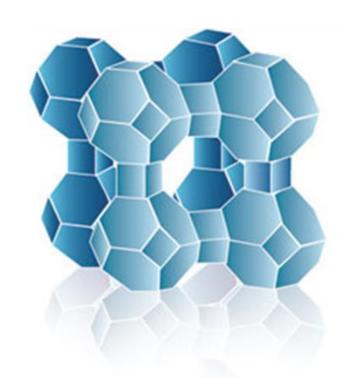
- ✓ Adsorvente comercial sintético de estrutura cristalina similar ao zeólita natural
- ✓ Aparência de uma argila porosa. Formado com cristais com cavidades uniformes interconetadas por estreitas aberturas também uniformes chamadas de poros
- ✓ Primeira peneira molecular (ou Zeólito sintético) em 1932 por McBain
- ✓ Primeiro uso para secagem de ar para câmaras de frio.

Estrutura e composição de Peneiras Moleculares


Tetraedros de 4 Átomos de Oxigênio rodeados cada um por dois átomos de Sílica ou Alumínio, mais cátions de potássio, sódio ou cálcio que contrabalançam a estrutura.

Para desidratação de álcool é utilizado o tipo potássio- alumínio-silicato O cátion de potássio confere o poro de 3Å ideal para essa seleção

$$1 \text{ Å} = 1.10^{-10} \text{ m}$$


Molécula de água tem 2,8 Å de diâmetro

Molécula de etanol tem 4,4 Å de diâmetro

Estrutura e composição de Peneiras Moleculares

- ✓ Presença de Aluminio
- Estrutura carregada negativamente
- Cátions positivos (Sódio inicialmente)
- Forte campo eletrostático na superfície interna
- ✓ Troca dos cátions de Sódio
- Potássio ou Cálcio
- Altera tamanho dos poros e das características de adsorção
- Exemplo: Zeólito A (Na) ---- 4 Å
 Zeólito A (K) ---- 3 Å
 Zeólito A (Ca) ---- 5 Å

Peneiras moleculares

A principal vantagem sobre os adsorventes tradicionais é que os zeólitos podem ser *feitos por medida para determinadas aplicações* na biotecnologia, indústria petroquímica, indústria farmacêutica e na área do ambiente.

Como desvantagens pode-se apontar a sua *fraca resistência mecânica e instabilidade* na presença de soluções ácidas.

Preço elevado, 2 -2,5 vezes do sistema de desidratação com Benzeno

Etanol hidratado Aquecimento Evaporação Superaqucimento Dessorção Adsorção Condensação Condensação Flegma Etanol anidro

Desidratação com Peneira Molecular

RETIFICAÇÃO

Algumas características operacionais.

- ✓ Vapor mistura etanol-água superaquecido: zeólita tem afinidade por H₂O gasosa.
- ✓ Vapor saturado (etanol+água) contém água que ataca a zeólita reduzindo a resistência, aumenta reposição
- ✓ Pressão de vapor mistura alcoólica : 2,5 a 43,0 bar
- ✓ pH da mistura (4,5 a 6,0)
 ✓ pH<4,5 reduz resistência de zeólitas
 ✓ pH>6,0 aglomeração de zeólitas (pedras)
- Despresurizar lentamente para evitar rompimento de zeólitas.
- ✓ Vida útil de resinas zeólitas : 8 anos
- ✓ Peneiramento deve ser realizada a cada 2 a 3 safras (separar fragmentos)
- ✓ R\$ 11/kg de resina
- √ 14 g/m³ de mistura hidroalcoólica

Subprodutos – Resíduos

Vinhaça ou vinhoto: suspensão aquosa de sólidos orgânicos e minerais, componentes do vinho não arrastados pela destilação, açúcares, álcool e compostos voláteis pesados

Principal problema - Carga química e elevado volume – 13 L vinhaça/L etanol

Vinhaça ou vinhoto

DESCRIÇÃO	<u>Concentrações</u>			Padrão
	Mínimos	Média.	Máximos	/l.álcool
Dados de Processo				
Brix do Mosto (°B)	12,00	18,65	23,65	
Teor Alcoolico Vinho (°GL)	5,73	8,58	11,30	
Taxa de Vinhaça (I/I.alcool)	5,11	10,85	16,43	10,85 l
Vazão de Referência (m³/dia)	530,00	1908,86	4128,00	
Caracterização da Vinhaça:				
рН	3,50	4,15	4,90	
Temperatura (°C)	65,00	89,16	110,50	
Demanda Bioquímica Oxigênio (DBO₅) (mg/l)	6680,00	16949,76	75330,00	175,13 g
Demanda Química de Oxigênio (DQO) (mg/l)	9200,00	28450,00	97400,00	297,60 g
Sólidos Totais (ST) (mg/l)	10780,00	25154,61	38680,00	268,90 g
Sólidos Suspensos Totais (SST) (mg/l)	260,00	3966,84	9500,00	45,71 g
Sólidos Suspensos Fixos (SSF) (mg/l)	40,00	294,38	1500,00	2,69 g
Sólidos Suspensos Voláteis (SSV) (mg/l)	40,00	3632,16	9070,00	43,02 g
Sólidos Dissolvidos Totais (SDT) (mg/l)	1509,00	18420,06	33680,00	223,19 g
Sólidos Dissolvidos Voláteis (SDV) (mg/l)	588,00	6579,58	15000,00	77,98 g
Sólidos Dissolvidos Fixos (SDF) (mg/l)	921,00	11872,36	24020,00	145,21 g
Resíduos Sedimentáveis (RS) 1 hora (ml/l)	0,20	2,29	20,00	24,81 ml

Vinhaça ou vinhoto

DESCRIÇÃO	Co	Concentrações		
	Mínimos	Média.	Máximos	/l.álcool
Cálcio (mg/l CaO)	71,00	515,25	1096,00	5,38 g
Cloreto (mg/l Cl)	480,00	1218,91	2300,00	12,91 g
Cobre (mg/l CuO)	0,50	1,20	3,00	0,01 g
Ferro (mg/l Fe ₂ O ₃)	2,00	25,17	200,00	0,27 g
Fósforo total (mg/l P₂O₄)	18,00	60,41	188,00	0,65 g
Magnésio (mg/l MgO)	97,00	225,64	456,00	2,39 g
Manganês (mg/l MnO)	1,00	4,82	12,00	0,05 g
Nitrogênio (mg/l N)	90,00	356,63	885,00	3,84 g
Nitrogênio amoniacal (mg/l N)	1,00	10,94	65,00	0,12 g
Potássio total (mg/l K₂O)	814,00	2034,89	3852,00	21,21 g
Sódio (mg/l Na)	8,00	51,55	220,00	0,56 g
Sulfato (mg/l SO ₄)	790,00	1537,66	2800,00	16,17 g
Sulfito (mg/l SO ₄)	5,00	35,90	153,00	0,37 g
Zinco (mg/l ZnO)	0,70	1,70	4,60	0,02 g
Etanol-CG (ml/l)	0,10	0,88	119,00	9,1 ml
Glicerol (ml/l)	2,60	5,89	25,00	62,1 ml
Levedura (base seca) (mg/l)	114,01	403,56	1500,15	44,1 g

Utilização de vinhaça

- ✓ Utilização agrícola in natura, como adubo complementado ou não;
- ✓ Concentração para utilização como componente de ração;
- ✓ Fermentação aeróbica para produção de proteínas unicelulares
- ✓ Fermentação anaeróbica para produção de metano
- ✓ Reciclo no processo de obtenção de álcool a partir de melaço (substituição em até 30% do volume de água empregada no preparo de mostos de fermentação alcoólica)

500 até 2000 m³.ha⁻¹

A vinhaça

- ✓ eleva o pH dos solos;
- ✓ aumenta a Capacidade de Troca Catiônica (CTC),
- ✓ fornece e aumenta a disponibilidade de alguns nutrientes;
- ✓ melhora a estrutura do solo,
- ✓ aumenta a retenção de água;
- melhora a atividade biológica promovendo maior número de pequenos minhocas, besouros, bactérias e fungos.

Perdas e rendimentos médios das usinas de cana

Lavagem da cana	0,7%
Extração	3,9%
Torta de filtro	0,5%
Indeterminada	3,5%
Destilação	0,2%
Rendimento fermentativo	90,0%

Rendimento global

Açúcar 100 kg/t cana

Bioetanol hidratado 86 litros/t cana

Fonte: Valores adaptados de CTC (2005).

Vídeo do Processo

http://www.youtube.com/watch?v=JSaNsxpp6pU