

Fundamentos da Lubrificação

Por que Lubrificamos?

Existem muitas razões que podemos enumerar, mencionaremos algumas :

- Reduzir o Atrito e o Desgaste.
 - ■FUNÇÃO: formar uma película que impeça o contato direto entre duas superfícies que se movem relativamente entre si. Ou seja, o lubrificante reduz o atrito a níveis mínimos, quando comparado ao contato direto, exigindo uma força menor e evitando o desgaste do corpo.
- Esfriar as partes mecânicas.
- Proteger contra a ferrugem e a corrosão.
- ✓ Vedar as partes em movimento.
- Permitir um movimento livre.
- Eliminar ruídos.
- Para Prolongar a vida dos Equipamentos!

São funções de um lubrificante nos processos de conformação

- 1 Reduzir o atrito e conseqüentemente a carga de conformação;
- 2 Controlar o acabamento da superfície;
- 3 Minimizar o desgaste das ferramentas;
- 4 Proporcionar um isolamento térmico para a peça e as ferramentas;
- 5 Aumentar o limite de deformação que precede a fratura.

Funções Primárias do Lubrificante

Controle do Atrito.

Controle do Desgaste.

Controle da Temperatura.

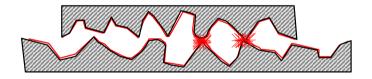
Controle da Ferrugem e da Corrosão.

Funções Secundárias do Lubrificante

Transmitir Potência.

Formar Selo (Vedação).

Remover Contaminantes.


Como Meio Amortecedor e Isolante.

Funções Primárias

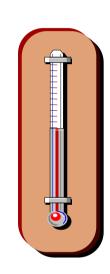
Controle do Atrito

Com uma adequada seleção da viscosidade. Com aditivos que reduzem o Atrito ao mínimo.

Controle do Desgaste

Ao reduzir o Atrito, controlamos o desgaste. Com aditivos que controlam o contato físico.

Funções Primárias


Controle da Temperatura

Sobretudo se o Lubrificante for utilizado em sistemas de circulação, onde com a mesma carga se lubrificam várias peças.

Com uma capa protetora de lubrificante.

Com aditivos que aderem aos metais

Funções Secundárias

Transmitir Potência

Como fluido em sistemas hidráulicos.

Em acoplamentos hidráulicos.

Formar um Selo (Vedar)

Nos Lubrificantes através de uma adequada seleção da viscosidade.

Nas graxas pelo seu corpo "espesso".

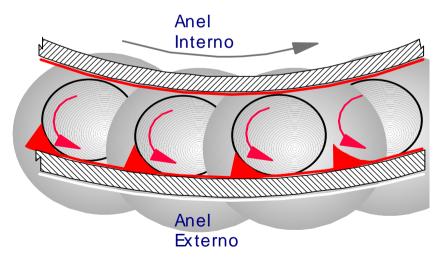
Funções Secundárias

Remover Contaminantes

Sobretudo nos Lubrificantes usados em circulação, ao percorrer todo o sistema banhando as peças, num movimento constante.

Como Meio Amortecedor Isolante

Em sistemas hidráulicos, para o controle do "golpe de ariete".


Em amortecedores industriais e automotivos.

LUBRIFICANTE

- Um Lubrificante se define como:
- Toda Matéria que introduzida entre duas superfícies em movimento tende a separá-las, reduzindo seu Atrito e Desgaste, além de protegê-las contra a Ferrugem e Corrosão.
- Enfim, estamos falando de:

Toda <u>Materia</u> <u>Não Abrasiva!</u>

De acordo com seu estado de agregação, os lubricantes podem se classificados em:

Líquidos: Água, óleo vegetal, animal ou mineral..

Sólidos: Grafite, Bisulf. de Molibdênio, Enxofre,

Fósforo....

Pastosos: Vaselina, graxa vegetal, animal ou

mineral....

► Gasosos: Todos os gases (a pressão).

- Óleos vegetais e animais se oxidam facilmente, quando em lubrificantes têm a função de aumentar a oleosidade do produto final aumentando sua eficiência.
- Óleos sintéticos são caros e por isso são utilizados apenas em casos específicos
- Óleos minerais são os mais usados

GRAXAS

Atual: graxa é uma combinação de um fluido com um espessante, resultando em um produto homogêneo com qualidades lubrificantes.

Óleo = fluido

Sabão = espessante

GRAXAS

- Aplicação:
- Onde n\u00e3o se deseja o escoamento
- Formação de selo protetor
- Uso em ambientes muito úmidos ou de agressividade acentuada

Tipos de Lubrificantes mais comuns usados no processamento mecânico

 i. água — apresenta alto calor específico e é o principal constituinte quando se deseja refrigerar e remover contaminadores simultaneamente. Com a finalidade de evitar efeitos químicos secundários, ela deve ser pura (destilada) ou pelo menos tratada;

ii. óleos minerais puros — geralmente pouco usados. São extensamente utilizados quando agregados a óleos e ácidos graxos. Por exemplo, emprega-se óleo mineral com 2 a 3% de óleo graxo para laminar pequenas seções; óleo mineral sulfurado com óleos graxos para estampagem profunda ou extrusão.

iii. óleos e ácidos graxos — os ácidos graxos são os mais usados, formando sabões metálicos devido à ação química sobre o metal. Os óleos graxos são saponificados e combinados com óleos minerais, formando graxas utilizadas na trefilação de arames. Estas graxas se misturam geralmente com cal, para proporcionar capas com pequeno atrito antes de se passar o arame pela matriz.

iv. ceras — as ceras são razoavelmente bons lubrificantes, conseguindo suportar altas pressões, principalmente quando combinadas com ácidos graxos e sabões. Suas propriedades são boas enquanto seu ponto de fusão não é excedido. São formas mais comumente empregadas: ceras parafínicas, ceras amaciadoras, ceras naturais etc. São freqüentemente empregadas na estampagem profunda, extrusão e laminação.

 v. sabão — sabão metálico em pó é frequentemente empregado na estampagem profunda e trefilação de arames. Exemplo: oleato de cálcio, estearato de cálcio etc.

- vi. sólidos minerais podem ser constituídos de componentes ativos e passivos. Os ativos são usados sob a forma de suspensão coloidal, para melhorar as propriedades lubrificantes sob alta pressão e/ou alta temperatura, que se encontram além do intervalo de utilização dos aditivos orgânicos. A grafita e o bissulfeto de molibdênio são exemplos comuns. Os passivos são minerais inertes agregados a outros lubrificantes, que melhoram a adesão ao metal e seu comportamento em condições críticas de trabalho. São geralmente usados: cal, talco, caolim, carbonatos, mica etc.
- vii. sólidos metálicos metais duros podem ser cobertos por metais macios, tais como o chumbo, cádmio, cobre, índio etc., para facilitar os processos de trefilação de barras e tubos etc.
- viii. vidros são usados como capas de baixo atrito em operações que alcançam temperaturas suficientemente altas para que o vidro se torne plástico. Pode ser mencionada a extrusão a quente de aços, trefilação de tubos etc.
 - ix. materiais sintéticos formam uma proporção crescente de lubrificantes para serem empregados na conformação mecânica de metais. Incluem materiais tais como o polietilenglicol e o silicone; ambos possuem grande intervalo de temperaturas de trabalho e a vantagem de se queimar sem deixar resíduos.
 - x. plásticos materiais como o polietileno, "nylon" e teflon. São frequentemente empregados sob a forma de lâminas de alguns micra de espessura, em operações de embutimento profundo e estampagem.

Características de um lubrificante ideal

- manter inalteradas as condições de lubrificação hidrodinâmicas ou lubrificação limite a altas pressões e temperaturas;
- diminuir o atrito superficial até valores compatíveis com o processo;
- dissipar eficazmente o calor gerado durante o processo de deformação;
- impedir a adesão metálica entre a matriz e o metal processado;
- 5. reduzir a transferência de metal entre a superficie da peça e a ferramenta;
- eliminar partículas abrasivas da superfície de trabalho;
- manter condições aceitáveis de acabamento superficial e características metalúrgicas dos produtos acabados;
- 8. não deixar resíduos ao ser tratado termicamente o material processado;
- ser de fácil remoção da superfície do produto nas operações de acabamento;
- não apresentar características tóxicas;
- possuir condutividade elétrica aceitável para assegurar o desaparecimento de cargas elétricas estáticas produzidas pelo atrito;
- possuir propriedades físico-químicas que permitam sua adesão á superfície do metal processado e da matriz;
- ter grande estabilidade química em alta temperatura.
- possui baixa reatividade e n\u00e3o interagir com outros lubrificantes ou aditivos.

Referências Adicionais:

- HELMAN, H. e CETLIN, P. R., Fundamentos da Conformação Mecânica dos Metais, Ed. Artliber, 2005.)
- Luís Carlos Simei, Técnico de Manutenção. Aula Sobre Fundamentos de Lubrificação.