Degradação e Proteção de Materiais

Lista 1 -

Termodinâmica

1/ Determine o número de oxidação de cada elemento na semi-reação seguinte:

$$ClO_2 + H_2O + 2e \Leftrightarrow ClO + 2OH$$

2/ Determine o número de oxidação de cada elemento na semi-reação seguinte:

$$Fe_2O_3 + 2H^+ + 2e \Leftrightarrow 2FeO + H_2O$$

3/ Escreva a semi-reação redox correspondente ao sistema Cl₂/ClO₄⁻.

4/ Escreva a semi-reação redox correspondente ao sistema Cr³⁺/Cr₂O₇²⁻.

5/ A reação do ferro com o cromato de sódio (Na₂CrO₄) conduz à formação do óxido de ferro Fe₂O₃ e do óxido de cromo Cr₂O₃ (processo de inibição). Escreva a reação total de oxi-redução envolvida <u>balanceada</u>.

6/ O ataque corrosivo do nióbio pelo hidróxido de sódio conduz à formação de isopoliniobatos $\mathrm{Nb_6O_{19}}^{8-}$ e ao desprendimento de hidrogênio. Escreva a reação total de oxiredução envolvida balanceada.

7/ A partir dos potenciais-padrão dados, calcule a variação de energia livre padrão da reação: $2MnO_4^- + 5H_2C_2O_4 + 6H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$

Dados:
$$E^{\circ} Mn^{2+}/MnO_4^{-} = 1,49 \text{ V/ENH}$$
 ; $E^{\circ} H_2C_2O_4/CO_2 = -0,49 \text{ V/ENH}$

8/ Calcule a variação de energia livre padrão ΔG^{O} da reação seguinte a partir dos potenciais padrão e diga qual é o sentido espontâneo da reação:

$$2Cr^{3+} + 6Fe^{3+} + 7H_2O \iff Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+$$

Dados:
$$E^{O} Fe^{2+}/Fe^{3+} = 0.77 V ; E^{O} Cr^{3+}/Cr_{2}O_{7}^{2-} = 1.33 V ; F = 96487 C$$

9/ A partir dos potenciais-padrão em meio ácido dos sistemas MnO₂/MnO₄⁻ e Mn²⁺/MnO₂, calcule o potencial-padrão do sistema Mn²⁺/MnO₄⁻.

Dados:
$$E^{O} MnO_2/MnO_4^{-} = 1,679 V ; E^{O} Mn^{2+}/MnO_2 = 1,208 V$$

10/ Determine as equações que representam no diagrama de Pourbaix os equilíbrios seguintes:

$$Al/Al^{3+}$$
, Al^{3+}/Al_2O_3 e Al/AlO_2^-

Dados:
$$[Al^{3+}] = 10^{-6}M$$
; $[AlO_2^{-}] = 10^{-6}M$; $T = 25^{\circ}C$
 $G^{\circ}Al = 0$ cal; $G^{\circ}Al^{3+} = -115000$ cal; $G^{\circ}Al_2O_3 = -376770$ cal; $G^{\circ}AlO_2^{-} = -200710$ cal
 $G^{\circ}H_2O = -56560$ cal; $G^{\circ}H^{+} = 0$ cal; 1 cal = 4.18 J; $R = 8.32$ J.K⁻¹.mol⁻¹; $F = 96487$ C

11/ Determine as equações que representam no diagrama de Pourbaix os equilíbrios seguintes: Cu/Cu^{2+} , Cu/Cu_2O e Cu^{2+} / CuO

$$\begin{array}{l} \underline{\textbf{Dados:}} \; [Cu^{2+}] = 10^{-6} \; M \; ; \; T = 25 ^{\circ} C \; ; \; F = 96487 \; C \; ; \; R = 8,32 \; J.K^{-1}.mol^{-1} \; \; ; \; 1 \; cal = 4,18 \; J \; ; \\ G^{o} \; Cu = \; 0 \; cal \; ; \; G^{o} \; Cu^{2+} = 15530 \; cal; \; G^{o} \; Cu_{2}O = -34980 \; cal; \; G^{o} \; CuO = -30400 \; cal \\ G^{o} \; H_{2}O = -56560 \; cal \; ; \; G^{o} \; H^{+} = 0 \; cal \; . \end{array}$$

12/ Foi medido o potencial de equilíbrio do sistema A^{+1}/A^{n+1} (A^{n+1} + ne \leftrightarrow A^{+1}) a 25°C. Os valores dos potenciais medidos em relação ao eletrodo normal de hidrogênio (ENH) para várias concentrações dos íons são apresentados a seguir.

[A+1] (M)	0,244	0,488	0,732	0,854
[A ⁿ⁺¹] (M)	0,756	0,512	0,268	0,146
E (V/ENH)	- 0,101	- 0,116	- 0,129	- 0,139

Trace na figura 1 E versus Ln [A^{n+1}] / [A^{+1}] e a partir da lei de Nernst e dos dados, determine o valor de n e o valor do potencial-padrão do sistema A^{+1}/A^{n+1} .

Dados:
$$R = 8.32 \text{ J.K}^{-1} \text{.mol}^{-1}$$
; $F = 96487 \text{ C}$

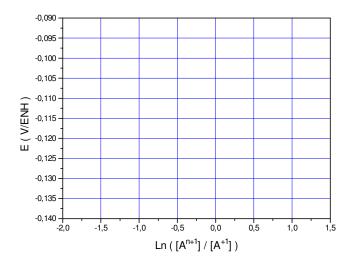


Fig.1

- 13/ A figura 2 representa o diagrama de Pourbaix do sistema Ti-H₂O a 25°C.
- **a-** O que significam as linhas que aparecem neste diagrama ? Porquê tem umas verticais, outras horizontais e outras oblicas ? Para que serve este diagrama ?
- **b-** Quando um eletrodo de titânio é imerso em soluções de HNO₃ 40% (pH \approx 0) a 25°C, o potencial do titânio se estabiliza em torno de +0,443 V/ECS. Quais são as reações que ocorrem na superfície do titânio ? Ocorre imunidade, passivação ou corrosão ?
- **c-** Quando um eletrodo de titânio é imerso em soluções de H_2SO_4 40% (pH \approx 0) a 25°C, o potencial do titânio se estabiliza em torno de -0,742 V/ECS. Quais são as reações que ocorrem na superfície do titânio ? Ocorre imunidade, passivação ou corrosão ?

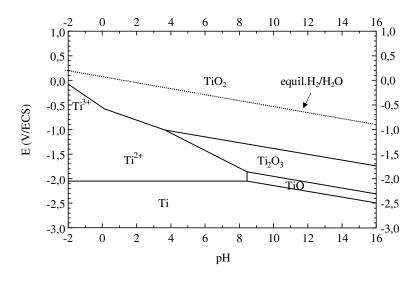


Fig.2

Respostas Lista 1 -2002

$$1/ \text{ClO}_2 + \text{H}_2\text{O} + 2\text{e} \Leftrightarrow \text{ClO} + 2\text{OH}$$

+3 -2 +1 -2 +1 -2 -2 +1

$$2/ \text{Fe}_2\text{O}_3 + 2\text{H}^+ + 2\text{e} \iff 2\text{FeO} + \text{H}_2\text{O} + 3 - 2 + 1 + 2 + 2 - 2 + 1 - 2$$

$$3/ 2 \text{ ClO}_4^- + 16\text{H}^+ + 14\text{e} \iff \text{Cl}_2 + 8\text{H}_2\text{O}$$

4/
$$Cr_2O_7^{2-} + 14H^+ + 6e \Leftrightarrow 2Cr^{3+} + 7H_2O$$

5/ 2Fe +
$$2Na_2CrO_4$$
 + $2H_2O \Leftrightarrow Fe_2O_3 + Cr_2O_3 + 4NaOH$

6/ 6Nb + 8NaOH +
$$11H_2O \Leftrightarrow Na_8Nb_6O_{19} + 12H_2$$

$$7/ 2MnO_4^- + 5H_2C_2O_4 + 6H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

n° de e trocados: 10

$$\Delta G^{\circ} = 10 \text{F} \left(\text{E}^{\circ} \text{H}_2 \text{C}_2 \text{O}_4 / \text{CO}_2 - \text{E}^{\circ} \text{Mn}^{2+} / \text{Mn} \text{O}_4^{-} \right) = 10 \text{ x } 96487 \text{ x } \left(-0.49 - 1.49 \right) = -1910 \text{ kJ}$$

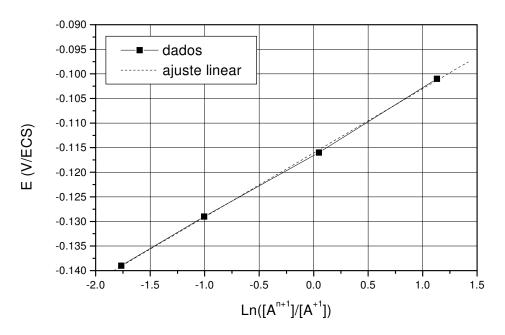
8/
$$2Cr^{3+} + 6Fe^{3+} + 7H_2O \iff Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+$$

n° de e trocados: 6

$$\Delta G^{\circ} = 6F (E^{O} Cr^{3+}/Cr_{2}O_{7}^{2-} - E^{O} Fe^{2+}/Fe^{3+}) = 6x 96487 x (1,33 - 0,77) = +324 kJ$$

9/
$$MnO_4^- + 4H^+ + 3e \iff MnO_2 + 2H_2O$$
 (1)

$$MnO_2 + 4H^+ + 2e \iff Mn^{2+} + 2H_2O$$
 (2)


$$MnO_4^- + 8H^+ + 5e \iff Mn^{2+} + 4H_2O$$
 (3)

 $\Delta G^{\circ}_{3} = -5F E^{\circ}Mn^{2+}/MnO_{4}^{-} = \Delta G^{\circ}_{1} + \Delta G^{\circ}_{2} = -3F E^{\circ}_{1} MnO_{2}/MnO_{4}^{-} - 2F E^{\circ}_{1} MnO_{2}$ $E^{\circ}_{1} MnO_{4}^{-} = +1,49 V$

10/ a/ Al ³⁺ + 3e
$$\Leftrightarrow$$
 Al
E = - (G° Al - G° Al ³⁺) / 3F + 0,059/3 . log [Al ³⁺] = -1,778 V b/ 2Al ³⁺ + 3H₂O \Leftrightarrow Al₂O₃ + 6H⁺
 Δ G° = -RT Ln K
G° Al₂O₃ + 6 G° H⁺ - 2 G° Al ³⁺ - 3 G° H₂O = -RT Ln ([H⁺]⁶/[Al ³⁺]²) [H⁺] = 1,6x10⁻⁵ → pH = 4,79 c/ AlO₂⁻ + 4H⁺ + 3e \Leftrightarrow Al + 2H₂O
E = - (G° Al + 2 G° H₂O - G° AlO₂⁻ - 4 G° H⁺)/3F + 0,059/3 . log ([AlO₂⁻]x[H⁺]⁴) E = -1,383 - 0,078 pH (V)
11/ a/ Cu²⁺ + 2e \Leftrightarrow Cu
E = - (G° Cu - G° Cu²⁺) / 2F + 0,059/2 . log [Cu²⁺] = + 0,159 V b/ Cu₂O + 2H⁺ + 2e \Leftrightarrow 2Cu + H₂O
E = - (2G° Cu + G° H₂O - G° Cu₂O - 2 G° H⁺) / 2F + 0,059/2 . log ([H⁺]²) E = + 0,467 - 0,059 pH (V) c/ Cu²⁺ + H₂O \Leftrightarrow CuO + 2H⁺ Δ G° = -RT Ln K G° CuO + 2 G° H⁺ - G° Cu²⁺ - G° H₂O = -RT Ln ([H⁺]²/[Cu²⁺]) [H⁺] = 1,28x10⁻⁷ → pH = 6,89

12/

$[A^{+1}] (M)$	0,244	0,488	0,732	0,854
$[\mathbf{A}^{\mathbf{n+1}}] (\mathbf{M})$	0,756	0,512	0,268	0,146
E (V/ENH)	- 0,101	- 0,116	- 0,129	- 0,139
$Ln [A^{n+1}]/[A^{+1}]$	1,131	0,048	-1,004	-1,766

Usando o ajuste linear: Y = A + BX (E (V/ENH) = E o + RT/nF . Ln [A^{n+1}] / [A^{+1}])

$$A = E^{o} = -0.11606 \text{ V}$$

$$B = RT/nF = +0.01304 \rightarrow n = 2$$

13/ a- as linhas representam os equilíbrios entre espécies na forma E-pH

linhas verticais: equilíbrios puramente químicos

linhas horizontais : equilíbrios eletroquímicos independentes do pH

linhas oblicas: equilíbrios eletroquímicos dependentes do pH

uso deste diagrama: prever a possibilidade de ocorrência de reações em condições conhecidas de E e pH (mas unicamente do ponto de vista termodinâmico)

b- Ti em HNO₃ 40% (pH \approx 0) a 25°C: E =+0,443 V/ECS (ponto A)

reação anódica: Ti $+2H_2O \rightarrow TiO_2 + 4H^+ + 4e$ (passivação)

reações catódicas: $2H^+ + \frac{1}{2}O_2 + 2e \rightarrow H_2O$

$$NO_3^- + 4 H^+ + 3e \rightarrow NO + 2H_2O$$

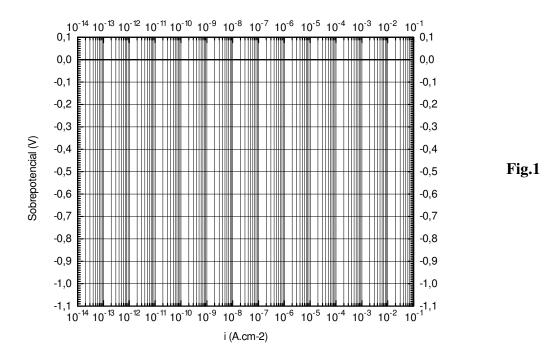
c- Ti em $H_2SO_4 40\%$ (pH ≈ 0) a $25^{\circ}C$: E = -0,742 V/ECS (ponto B)

reação anódica: $Ti \rightarrow Ti^{n+} + ne$ (corrosão)

reações catódicas: $2H^+ + 2e \rightarrow H_2$

$$2H^+ + \frac{1}{2}O_2 + 2e \rightarrow H_2O$$

Degradação e Proteção de Materiais Lista 2


Cinética – Teoria do potencial misto

1/ A medida dos sobrepotenciais de formação de hidrogênio sobre o mercúrio em solução contendo 50% de metanol e 0,1N HCl a 25°C forneceu os seguintes resultados:

i (A.cm-2)	10-6	10-5	10-4	10-3	10-2
η (V)	-0,665	-0,791	-0,893	-0,988	-1,089

Trace na figura 1 a curva η versus i e determine o coeficiente de Tafel b_c e o valor da densidade de corrente de troca i_0 .

<u>Dados:</u> relação de Tafel: $\eta = b \log (|i| / i_0)$

2/ As curvas de polarização da figura 2 correspondem a:

- dissolução do metal M de área 1 cm² e redução de Ox₁ sobre M de área 1 cm².
- dissolução do metal N de área 1 cm² e redução de Ox₁ sobre N de área 1 cm².
- redução de Ox₁ sobre o metal P de área 1 cm².
- redução de Ox₂ sobre o metal M de área 1 cm².

a/ Quais são as densidades de corrente de corrosão de M sozinho e de N sozinho em soluções contendo unicamente o oxidante Ox_1 ?

b/ Quais as densidades de corrente de corrosão de M (área 1 cm²) e de N (área 1 cm²) quando ligados entre si em soluções contendo unicamente o oxidante Ox₁?

c/ Qual é a densidade de corrente de corrosão de M (área 1 cm²) sozinho em soluções contendo os oxidantes Ox_1 e Ox_2 ?

d/ Qual é a densidade de corrente de corrosão de $N(\text{área 1 cm}^2)$ ligado a $P(\text{área 1 cm}^2)$ em soluções contendo unicamente o oxidante Ox_1 ?

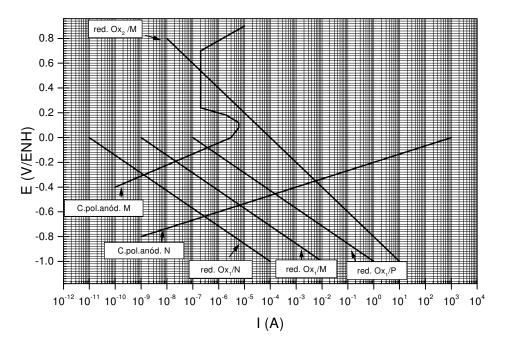
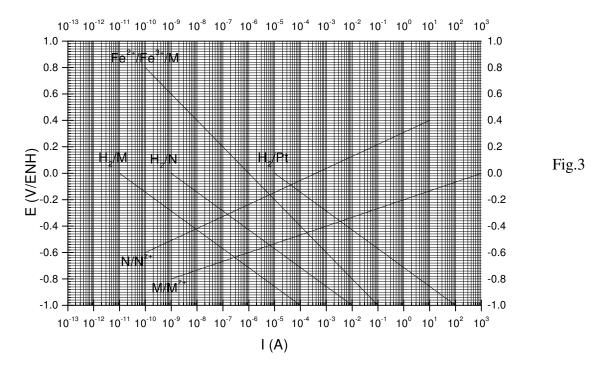



Fig.2

3/ As retas de Tafel da figura 3 correspondem a:

- dissolução do metal \widetilde{M} de área 1 cm² e formação de H_2 sobre M de área 1 cm².
- dissolução do metal N de área 1 cm² e formação de H₂ sobre N de área 1 cm².
- formação de hidrogênio sobre a platina de área 1 cm².
- redução de Fe³⁺ sobre o metal M de área 1 cm².
- a/ Quais são as densidades de corrente de corrosão de M sozinho e de N sozinho em soluções de HCl sem a presença do oxidante Fe^{3+} ?
- **b/** Quais as densidades de corrente de corrosão de M (de área 1 cm²) e de N (de área 10 cm²) quando ligados entre si em soluções de HCl sem a presença do oxidante Fe³+?
- **c/** Qual é a densidade de corrente de corrosão de M sozinho em soluções de HCl contendo o oxidante Fe³⁺?
- **d/** Qual é a densidade de corrente de corrosão de M (de área 1 cm^2) ligada à platina (de área 10 cm^2) em soluções de HCl sem a presença do oxidante Fe³⁺?

4/ A corrosão do alumínio em soluções ácidas conduz à formação de íons $A1^{3+}$. Um estudo do comportamento eletroquímico do Al em solução de NaCl 3% a pH 2 e 25°C mostrou que a densidade de corrente de corrosão do Al é de 15 μ A.cm⁻². Calcule a taxa de corrosão do Al em g.cm⁻².h⁻¹ e em μ m/ano.

<u>Dados:</u> M _{Al} = 27 g ; d _{Al} = 2,7 g.cm⁻³ ; F = 96 487 A.s

5/ Sabendo que a taxa de corrosão do chumbo em HCl 10% a 25°C é de 0,56 mm/ano e há formação de íons Pb²⁺, calcule a taxa de corrosão do Pb em g.cm⁻².h⁻¹ e a densidade de corrente de corrosão em μA.cm⁻².

<u>Dados:</u> $M_{Pb} = 207.2 \text{ g}$; $d_{Pb} = 11.4 \text{ g.cm}^{-3}$; F = 96.487 A.s.

6/ A figura 4 mostra uma curva de polarização experimental obtida para o Ti em solução de H_2SO_4 20% (pH \approx 0) a 25°C.

Indique na figura quais são as partes catódica e anódica e as regiões ativa e passiva.

Indique os pontos característicos desta curva: potencial de corrosão, densidade de corrente de corrosão, densidade de corrente crítica e densidade de corrente passiva e dê seus valores. A partir do diagrama de Pourbaix do Ti (figura 5), diga se o Ti é espontaneamente ativo ou passivo nesta solução. Justifique.

A partir do valor da densidade de corrente de corrosão medido, calcule a taxa de corrosão do Ti (em μm/ano) nesta solução supondo que se formam íons Ti³⁺.

<u>Dados:</u> M $_{Ti} = 47.9 \text{ g}$; d $_{Ti} = 4.51 \text{ g.cm}^{-3}$; F = 96.487 A.s.

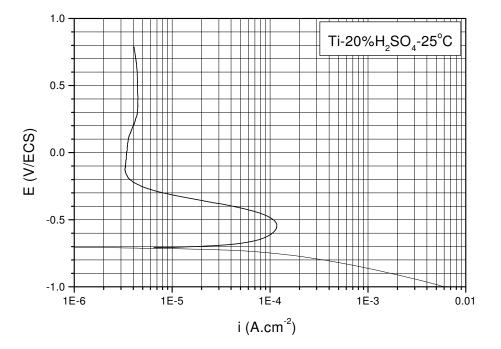
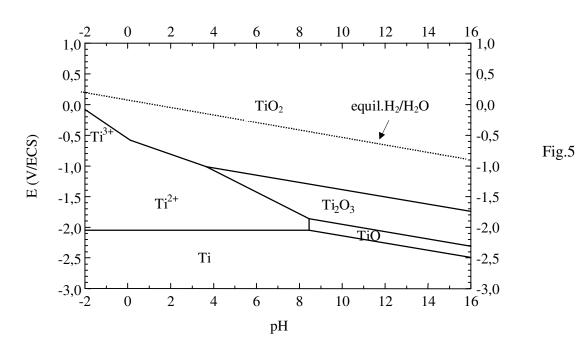



Fig.4

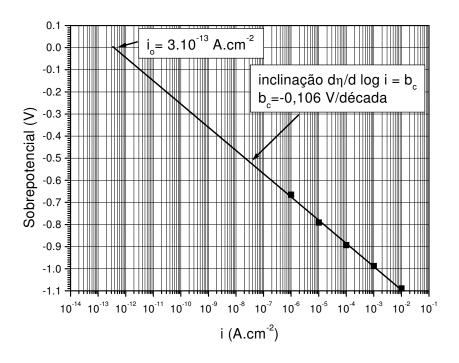


Fig.1

2/

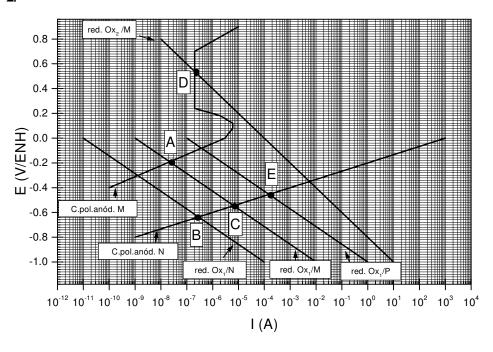


Fig.2

a/ M sozinho e N sozinho em soluções contendo unicamente o oxidante Ox_1 Corrosão de M (ponto A): $i = 3.10^{-8} \text{ A.cm}^{-2}$

Corrosão de N (ponto B): $i = 2 \text{ a } 3.10^{-7} \text{ A.cm}^{-2}$

b/ M (área 1 cm²) e N (área 1 cm²) quando ligados entre si em soluções contendo unicamente o oxidante Ox_1

Corrosão de N (ponto C): i = 6 a 7.10⁻⁶ A.cm⁻² Corrosão de M (E pontoC < E eq M): i = 0 A.cm⁻²

- **c/** M (área 1 cm²) sozinho em soluções contendo os oxidantes Ox_1 e Ox_2 Corrosão de M (ponto D): $i = 2.10^{-7}$ A.cm⁻²
- **d/** N(área 1 cm²) ligado a P (área 1 cm²) em soluções contendo unicamente o oxidante Ox_1 Corrosão de N (ponto E): $i = 2.10^{-4} \text{ A.cm}^{-2}$

3/

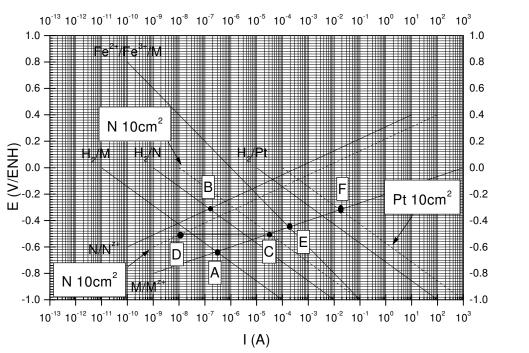


Fig.3

a/ M sozinho e N sozinho em soluções de HCl sem a presença do oxidante Fe³⁺ Corrosão de M (ponto A): i = 2 a 3.10⁻⁷ A.cm⁻² Corrosão de N (ponto B): i = 1 a 2.10⁻⁷ A.cm⁻²

b/ M (de área $1~{\rm cm}^2$) e N (de área $10~{\rm cm}^2$) quando ligados entre si em soluções de HCl sem a presença do oxidante Fe³⁺

Corrosão de M (ponto C): $i = 3.10^{-5} \text{ A.cm}^{-2}$ Corrosão de N (ponto D): $i = 10^{-8}/10 = 10^{-9} \text{ A.cm}^{-2}$

c/ M sozinho em soluções de HCl contendo o oxidante Fe³⁺ Corrosão de M (ponto E): i = 2.10⁻⁴ A.cm⁻²

 $\mbox{d/}$ M (de área 1 cm²) ligada à platina (de área 10 cm²) em soluções de HCl sem a presença do oxidante Fe³+

Corrosão de M (ponto F): $i = 2.10^{-2} \text{ A.cm}^{-2}$

4/ Reação: Al
$$\rightarrow$$
 Al³⁺ + 3e

$$\frac{i_{corr}.t}{3F}.M = \frac{15.10^{-6} \times 3600}{3 \times 96487} \times 27 = 5,03.10^{-6} \text{ g.cm}^{-2}.h^{-1}$$

$$\frac{5,03.10^{-6}}{2.7}.24.365.10^4 = 163 \,\mu\text{m/ano}$$

5/ Reação: Pb \rightarrow Pb²⁺ + 2e Taxa = 0,56 mm/ano \Rightarrow Taxa = 0,056 x 11,4 = 0,638 g.cm⁻²/ano Taxa = 0,638/(365 x 24) = **7,28. 10**⁻⁵ **g.cm⁻².h**⁻¹

$$\frac{i_{corr}.t}{2F}.M = \frac{i_{corr}.3600}{2x96487}x207,2 = 7,28.10^{-5} \implies i_{corr} = 1,88.10^{-5} \text{ A.cm}^{-2} = 18,8 \text{ }\mu\text{A.cm}^{-2}$$

6/

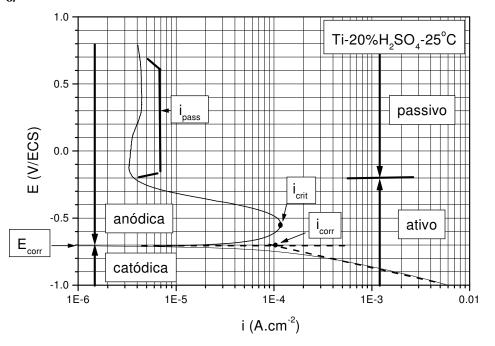


Fig.4

potencial de corrosão (E_{corr}): -0,7 V/ECS densidade de corrente de corrosão (i_{corr}): $\approx 10^{-4}~A.cm^{-2}$ densidade de corrente crítica (i_{crit}): $\approx 1,2.10^{-4}~A.cm^{-2}$ densidade de corrente passiva (i_{pass}): $\approx 3,3~a~4,4.10^{-6}~A.cm^{-2}$

No diagrama de Pourbaix, a pH 0 e E_{corr} = -0,7 V/ECS (ponto A): região ativa \Rightarrow o Ti é espontaneamente ativo na solução.

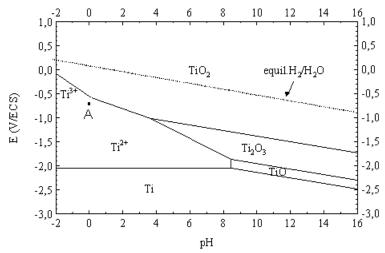


Fig.5

Reação: Ti
$$\rightarrow$$
 Ti³⁺ + 3e
$$\frac{i_{corr}.t}{3F}.\frac{M}{d} = \frac{10^{-4}\,x3600x24x365}{3x96487}x\frac{47,9}{4,51}x10^4 = \textbf{1 157 }\mu\text{m/ano}$$

Degradação e Proteção de Materiais Lista 3

Proteção catódica - Proteção anódica - Inibidores

1/ A figura 1 representa as curvas de polarização anódica e catódica de uma estrutura de ferro (área: 100 m²) em água do mar.

a/ Quais são a densidade de corrente de corrosão espontânea e o potencial de corrosão da estrutura de ferro no mar? Calcule a perda de massa total da estrutura depois de 5 anos ? ($M_{Fe} = 56 \text{ g}$; F = 96487 C).

b/ Um sistema de proteção catódica por corrente impressa com anodos de Fe-Si-Cr foi usado para proteger a estrutura. Após 5 anos foram consumidos 120 kg de anodos. Sabendo que o desgate dos anodos é de 0,4 kg/(A.ano), determine a corrente média fornecida pelos anodos. Quais foram a densidade de corrente de corrosão e o potencial da estrutura no mar durante a proteção?

c/ Um sistema de proteção catódica por anodos de sacrifício de alumínio foi usado para proteger a estrutura. Após 5 anos foram consumidos 400 kg de anodos. Sabendo que a capacidade dos anodos é de 2200 A.h/kg, determine a corrente média fornecida pelos anodos. Quais foram a densidade de corrente de corrosão e o potencial da estrutura de ferro no mar durante a proteção?

obs.: todas as respostas devem ser indicadas na figura 1 por pontos (A, B, C)

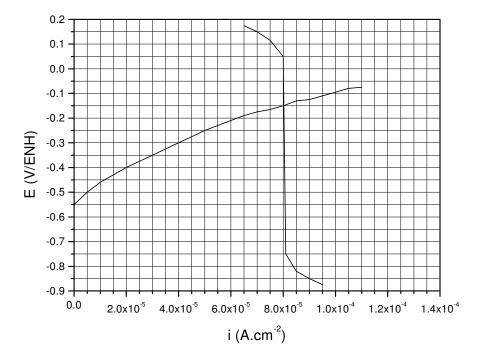
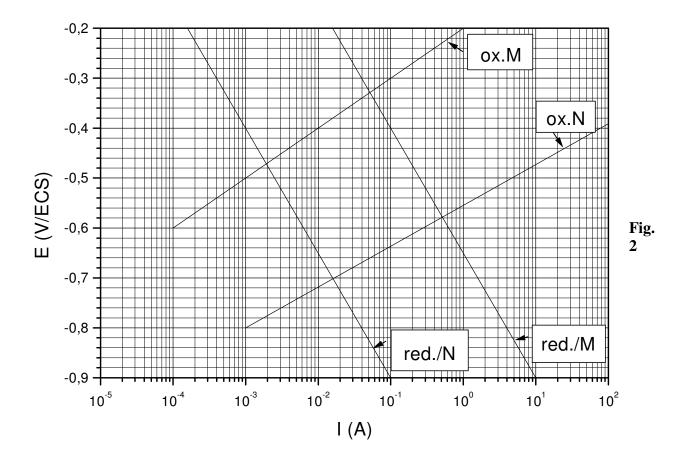



Fig. 1

- **2/** A figura 2 representa as curvas de polarização anódica (ox.M) e catódica (red./M) de uma estrutura do metal M de área 20 m² numa dada solução eletrolítica.
- a/ Quais são o potencial de corrosão espontâneo e a densidade de corrente de corrosão da estrutura ?
- **b/** Um sistema de proteção catódica por anodos de sacrifício de metal N de área 0,5 m² foi usado para proteger a estrutura de M. A partir das curvas de polarização anódica e catódica para M e N da figura 2, determine o potencial e a densidade de corrente de corrosão do metal M quando protegido pelo metal N.
- c/ Mesmas perguntas se a área dos anodos for aumentada para 5 m².
- **d/** Um sistema de proteção catódica por corrente impressa foi usado para proteger a estrutura de M. Determine o potencial de corrosão e a densidade de corrente de corrosão de M quando o gerador de corrente contínua fornece 100, 200 e 2000 mA, respectivamente.

Obs.: todas as respostas devem ser indicadas na figura 1 por pontos (A, B, C...)

- **3/** A figura 3 representa as curvas de polarização anódica e catódica de um metal suscetível de se passivar.
- a/ Qual é a corrente espontânea do metal?
- **b/** Qual é a corrente total mínima a ser aplicada para passivar o metal e a corrente necessária para manter a passivação ?
- c/ Qual é a corrente a ser aplicada, em proteção catódica desta vez, para obter o mesmo nível de proteção do que em proteção anódica (ítem b/) ?

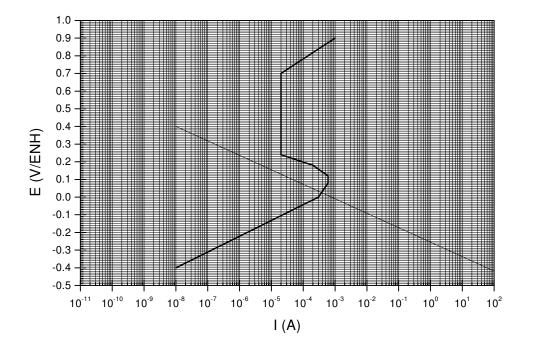


Fig.3

4/ A adição de um inibidor de adsorção diminuiu o potencial de corrosão de uma placa metálica de 15 mV. Sabendo que a porcentagem de cobertura da área anódica pelo inibidor foi de 80%, calcule qual foi a redução da taxa de corrosão do metal em porcentagem e a porcentagem de cobertura da área catódica pelo inibidor.

Considerar que os coeficientes de Tafel anódico e catódico ficam constantes e iguais respectivamente a 0,060 V/década e -0,120 V/década.

5/ Um inibidor de adsorção foi adicionado num meio corrosivo para proteger uma estrutura metálica da corrosão. Sabendo que a porcentagem de cobertura da área anódica pelo inibidor foi de 80% e da área catódica de 95%, calcule qual foi a redução da taxa de corrosão do metal em porcentagem e a variação do potencial de corrosão da estrutura metálica. Considerar que os coeficientes de Tafel anódico e catódico ficam constantes e iguais respectivamente a 0,060 V/década e -0,120 V/década

6/ A adição de um inibidor anódico aumentou o potencial de corrosão de uma placa metálica de 15 mV e reduziu a taxa de corrosão de 80%. Calcule qual foi a porcentagem de redução da quantidade de sítios anódicos. Considerar que o coeficiente de Tafel anódico fica constante e igual a +0,060 V/década.

7/ A adição de um inibidor catódico diminuiu o potencial de corrosão de uma placa metálica de 15 mV e reduziu a taxa de corrosão de 90%. Calcule qual foi a porcentagem de redução da quantidade de sítios catódicos. Considerar que o coeficiente de Tafel catódico fica constante e igual a –0,120 V/década.

8/ A figura 4 representa as curvas de polarização de uma aço carbono em solução de ácido sulfúrico 10% a temperatura ambiente, com e sem a presença de um inibidor orgânico de adsorção. Determine os potenciais de corrosão e as densidades de corrente de corrosão do metal nas duas situações. Qual foi, em porcentagem, a redução da taxa de corrosão pela adição do inibidor? Determine, a partir dos dados das curvas, a porcentagem de cobertura das áreas anódicas e catódicas pelo inibidor.

Obs.: todas as respostas devem ser justificadas no gráfico.

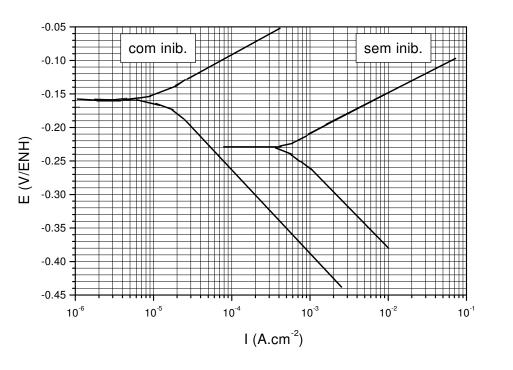
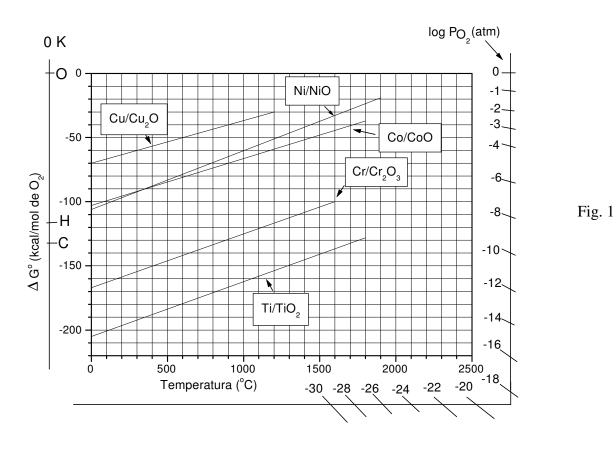


Fig. 4

Degradação e Proteção de Materiais Lista 4

Oxidação

1a/ A partir da variação de energia livre de formação de Cu₂O, calcule a pressão de oxigênio a partir da qual este óxido se forma sobre o Cu a 800°C.


Dados: 2Cu + ½ O₂ ⇔ Cu₂O
$$\Delta$$
G° = -166 900 + 71,1 T (J)
R = 8,32 J.K⁻¹.mol⁻¹

b/ A partir do diagrama de Ellingham (figura 1), mostre seu procedimento para obter rapidamente esta pressão sem cálculo.

2a/ A partir da variação de energia livre de formação de CoO, calcule a pressão de oxigênio a partir da qual este óxido se forma sobre o Co a 1000°C.

Dados: Co +
$$\frac{1}{2}$$
 O₂ \Leftrightarrow CoO $\Delta G^{\circ} = -235\ 900 + 71,5\ T\ (J)$
R = 8,32 J.K⁻¹.mol⁻¹

b/ A partir do diagrama de Ellingham (figura 1) mostre seu procedimento para obter rapidamente esta pressão sem cálculo.

3/ A partir da variação de energia livre do equilíbrio CuS/Cu₂S, calcule a pressão de enxofre a partir da qual os dois sulfetos se formam sobre o Cu a 800K.

Dados:
$$2Cu_2S + S_2 \Leftrightarrow 4CuS$$
 $\Delta G^{\circ} = -180\ 000 + 200\ T \ (J)$
 $R = 8.32\ J.K^{-1}.mol^{-1}$

4/ A partir da variação de energia livre do equilíbrio FeO/Fe₃O₄, calcule a pressão de oxigênio a partir da qual os dois óxidos se formam sobre o Fe a 900°C.

Dados: 3FeO +
$$\frac{1}{2}$$
O₂ \Leftrightarrow Fe₃O₄ Δ G° = - 311 600 + 123 T (J)
R = 8,32 J.K⁻¹.mol⁻¹

- 5/ Para temperaturas abaixo de cerca 1100° C, o óxido de cromo Cr_2O_3 , acredita-se, possui lacunas catiônicas com três cargas $V_{Cr}^{\prime\prime\prime}$ compensadas por buracos de elétrons \dot{h} . Escreva o equilíbrio entre estes defeitos iônicos e eletrônicos e determina suas concentrações como uma função da pressão parcial de oxigênio.
- **6/** Considerando que o óxido de chumbo, PbO₂, possui interstícios catiônicas com duas cargas positivas compensadas por elétrons, escreva o equilíbrio entre estes defeitos iônicos e eletrônicos e determina suas concentrações como uma função da pressão parcial de oxigênio.
- 7/ A figura 2 mostra esquematicamente a influência do teor de Cr em ligas Ni-Cr sobre a constante de crescimento parabólica k do filme de oxidação formado sobre as ligas.
- **a**/ Observa-se um aumento de k até cerca de 7% Cr. Sabendo que nesta faixa de concentração de Cr se forma o óxido de níquel NiO dopado com Cr e que NiO é um óxido tipo—p com defeitos catiônicos e eletrônicos, explique este aumento.
- **b/** A partir de 15% Cr k adquire um valor muito baixo. Explique a razão. Qual é o produto de oxidação formado sobre a liga para estes altos teores de Cr.

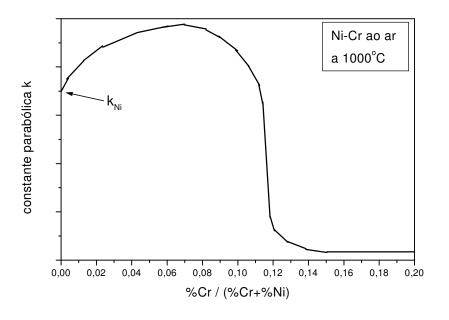
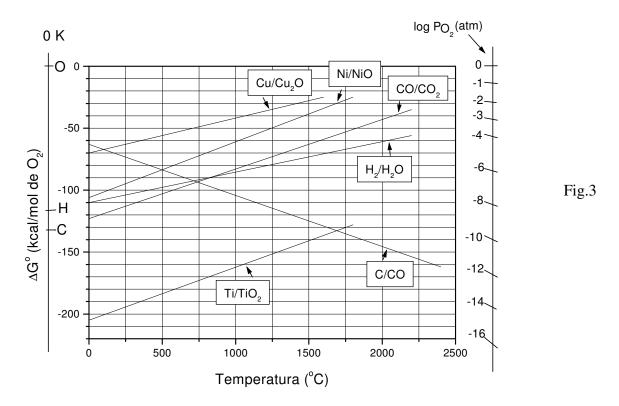


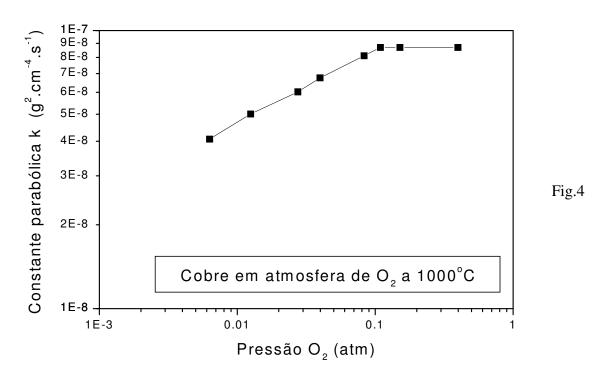
Fig.2

8/ O Zn quando exposto ao ar a altas temperaturas se oxida formando ZnO, óxido do tipo-n com interstícios de Zn com duas cargas e elétrons. A tabela 1 apresenta as constantes parabólicas de oxidação do Zn e das ligas Zn-0,4Li e Zn-1Al a 390°C ao ar.


Tabela 1: Constantes parabólicas de oxidação do Zn e das ligas Zn-0,4Li e Zn-1Al a 390°C

Material	k _p (10 ⁻¹⁰ g ² .cm ⁻⁴ .s ⁻¹)
Zn	8
Zn-0,4Li	2000
Zn-1Al	0,1

A partir de considerações termodinâmicas (equilíbrio entre defeitos) e de neutralidade elétrica, explique porque a adição de Li, e Al, ao Zn aumenta, e diminui o valor de k_p , respectivamente.


9/ Quando o cobre é exposto a oxigênio a altas temperaturas, forma-se, dependendo da pressão parcial do gas, uma camada de óxido Cu₂O ou duas camadas constituídas de Cu₂O e CuO (camada externa).

a/ A partir do diagrama de Ellingham (figura 3), determine o valor da pressão de dissociação de Cu₂O a 1000°C.

A partir da energia livre-padrão do equilíbrio: $2CuO(s) \Leftrightarrow Cu_2O(s) + \frac{1}{2}O_2(g)$ $\Delta G^\circ = (34\,950\,+\,6.1\,T.log\,T-44.3\,T\,).\,4.18$ (em J) calcule a pressão parcial de O_2 correspondente a este equilíbrio a $1000^\circ C$. Com estes dados, dê as faixas de pressão parcial de O_2 nas quais não se formarão oxidos, se formará unicamente Cu_2O e se formarão os dois óxidos de cobre.

b/ O óxido Cu_2O é do tipo-p, os defeitos sendo lacunas catiónicas e lacunas de elétrons. Considerando que estas lacunas catiónicas majoritariamente não possuem cargas, escreva o equilíbrio entre estes defeitos, deduza a relação que existe entre a concentração das lacunas catiónicas e a pressão parcial de O_2 e consequentemente a relação que existe entre a constante parabólica de crescimento de Cu_2O e a pressão parcial de O_2 . Compare esta relação com os dados experimentais da figura 4. Dê uma explicação de porque a partir de uma certa pressão, esta constante não depende da pressão parcial de O_2 (figura 4).

Respostas Lista 4-2002

1a/ 2Cu + ½ O₂
$$\Leftrightarrow$$
 Cu₂O ΔG° = -166 900 + 71,1 T (J)
A 800°C = 1073K : ΔG° = -90610 J = -RT ln P_{O2} -1/2 = RT ln P_{O2} 1/2 \Rightarrow P_{O2} = **1,53.10**-9 atm
b/ Fig.1 \Rightarrow Ponto A: P_{O2} ~ **10**-9 atm

2a/ Co + ½ O₂ ⇔ CoO
$$\Delta$$
G° = -235 900 + 71,5 T (J)
A 1000°C = 1273K: Δ G° = -144880 J = -RT ln P_{O2}^{-1/2} = RT ln P_{O2}^{1/2}
⇒ P_{O2} = 1,31.10⁻¹² atm

b/ Fig.1 \Rightarrow Ponto B: $P_{O2} \sim 10^{-11}$ atm

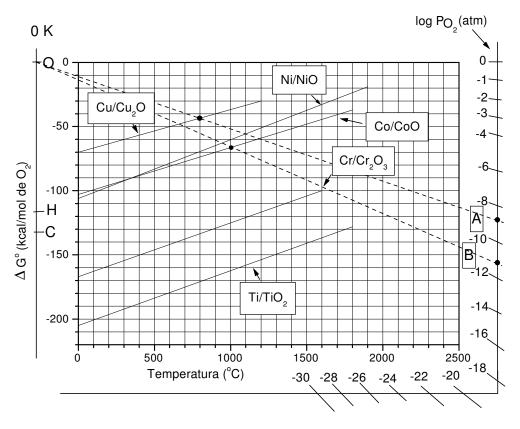


Fig. 1

3/
$$2Cu_2S + S_2 \Leftrightarrow 4CuS$$
 $\Delta G^{\circ} = -180\ 000 + 200\ T$ (J)
A $800K$: $\Delta G^{\circ} = -20000\ J = -RT \ln P_{S2}^{-1} = RT \ln P_{S2}$
 $\Rightarrow P_{S2} = 4.95.10^{-2}\ atm$

4/ 3FeO +
$$\frac{1}{2}$$
 O₂ \Leftrightarrow Fe₃O₄ Δ G° = - 311 600 + 123 T (J)
A 900°C= 1173K: Δ G° = -167321 J = -RT ln P_{O2} -1/2 = RT ln P_{O2} 1/2 \Rightarrow P_{O2} = **1,28.10**-15 atm

5/ Cr_2O_3 contendo $V_{Cr}^{"'}e \dot{h} \acute{e}$ do tipo p.

Equilíbrio: $2Cr_{Cr} + 3/2 O_2 \Leftrightarrow Cr_2O_3 + 2V_{Cr}''' + 6\dot{h}$

Constante de equilíbrio: $K = \frac{\left[V_{Cr}^{"}\right]^2 x \left[h^{\cdot}\right]^6}{P_{O2}^{3/2}}$

Neutralidade elétrica: $3[V_{Cr}^{"}] = [h] \implies$

$$K = \frac{\left[V_{Cr}^{""}\right]^{2} \times 3^{6} \left[V_{Cr}^{""}\right]^{6}}{P_{O2}^{3/2}} = \frac{\left[V_{Cr}^{""}\right]^{8} \times 3^{6}}{P_{O2}^{3/2}} \Rightarrow \left[V_{Cr}^{""}\right]^{8} \text{ proporcional a } P_{O2}^{3/2} \Rightarrow \left[V_{Cr}^{""}\right] \text{proporcional a } P_{O2}^{3/16}$$

$$e \left[h^{\cdot}\right] \text{proporcional a } P_{O2}^{3/16}$$

6/ PbO_2 possui interstícios catiônicas com duas cargas positivas $Pb_i^{\cdot \cdot}$ compensadas por elétrons e \bar{E} um oxido tipo n.

Equilíbrio: $Pb_{Pb} + 2 O_O \Leftrightarrow Pb_i^{\cdot \cdot} + O_2 + 2e'$

Constante de equilíbrio: $K = [Pb_i^{..}]xP_{O2}x[e^{i}]^2$

Neutralidade elétrica: $2[Pb_i^*] = [e'] \Rightarrow$

$$K = \left[Pb_{i}^{"}\right] \times P_{O2} \times 4 \left[Pb_{i}^{"}\right]^{2} = 4P_{O2} \left[Pb_{i}^{"}\right]^{3} \Rightarrow \left[Pb_{i}^{"}\right]^{3} \text{ proporcional a } P_{O2}^{-1} \Rightarrow \left[Pb_{i}^{"}\right] \text{ proporcional a } P_{O2}^{-1/3} \text{ e}$$

$$\left[e^{'}\right] \text{ proporcional a } P_{O2}^{-1/3}$$

7/a/ NiO é um óxido tipo-p com defeitos catiônicos e eletrônicos, $V_{Ni}^{''}e\ \dot{h}\ .$

Equilíbrio: Ni_{Ni} + $1/2 O_2 \Leftrightarrow NiO + V_{Ni}^{"} + 2\dot{h}$

Constante de equilíbrio: $K = \frac{\left[V_{Ni}^{"}\right]x\left[h\cdot\right]^{2}}{P_{O2}^{1/2}}$

Dopagem com $Cr \Rightarrow defeitos Cr_{Ni}$

Neutralidade elétrica: $2[V_{Ni}^{"}] = [h] + [Cr_{Ni}]$

 \Rightarrow Se a dopagem é suficiente $2[V_{Ni}^{"}] \approx [Cr_{Ni}^{\cdot}]$

 $\Rightarrow V_{\text{Ni}}^{"}$ aumenta com a quantidade de dopante

Como a velocidade de oxidação aumenta com o aumento da concentração de defeitos iônicos (lacunas de Ni aqui) e como esta concentração aumenta com a dopagem pelo Cr, temos um aumento da velocidade de oxidação com a adição de Cr ao Ni (ver figura 2 – região A).

b/ A partir de 15% Cr, k adquire um valor muito baixo porque se forma uma camada contínua de um só óxido Cr_2O_3 , que tem uma velocidade de crescimento muito baixa por conter poucos defeitos iônicos(ver figura 2 – região B).

.

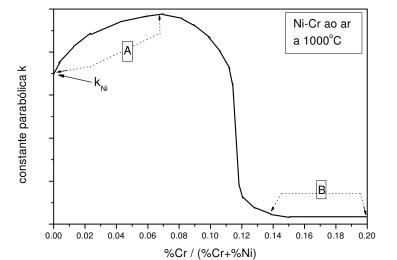


Fig.2

8/ ZnO é um óxido do tipo-n com interstícios de Zn com duas cargas e elétrons.

Equilíbrio: $\mathbf{Z}\mathbf{n}_{\mathbf{Z}\mathbf{n}} + \mathbf{O}_{\mathbf{O}} \iff \mathbf{Z}\mathbf{n}_{i}^{\cdot \cdot} + \frac{1}{2}\mathbf{O}_{2} + \mathbf{2}\mathbf{e}'$

Constante de equilíbrio: $K = \left[Zn_i \right] k P_{O2}^{1/2} x \left[e^{i}\right]^2$

* Dopagem com Li ⇒ defeitos Li_{Zn}

Neutralidade elétrica: $2[Zn_i] = [e'] + [Li_{Zn}]$

⇒ Se a dopagem é suficiente $2 \left[Z n_i^{"} \right] \approx \left[L i_{Z n}^{'} \right]$

⇒ Zn; aumenta com a quantidade de dopante

Como a velocidade de oxidação aumenta com o aumento da concentração de defeitos iônicos (interstícios de Zn aqui) e como esta concentração aumenta com a dopagem pelo Li, temos um aumento da velocidade de oxidação com a adição de Li ao Zn.

* Dopagem com Al \Rightarrow defeitos Al $_{Zn}$

Neutralidade elétrica: $2[Zn_i] + [Al_{Zn}] = [e']$

 \Rightarrow Se a dopagem é suficiente $\left[e^{\cdot}\right] \approx \left[Al_{Zn}^{\cdot}\right] \Rightarrow$

 $K = \left[Z n_{i}^{..} \right] x P_{O2}^{-1/2} x \left[A l_{Zn}^{..} \right]^{2} \Rightarrow \left[Z n_{i}^{..} \right] \text{proporcional a} \left[A l_{Zn}^{..} \right]^{-2}$

 \Rightarrow Zn_i diminui com a quantidade de dopante

Como a velocidade de oxidação aumenta com o aumento da concentração de defeitos iônicos (interstícios de Zn aqui) e como esta concentração diminui com a dopagem pelo Al, temos uma diminuição da velocidade de oxidação com a adição de Al ao Zn.

Tabela 1: Constantes parabólicas de oxidação do Zn e das ligas Zn-0,4Li e Zn-1Al a 390°C

Material	k _p (10 ⁻¹⁰ g ² .cm ⁻⁴ .s ⁻¹)
Zn	8
Zn-0,4Li	2000
Zn-1Al	0,1

9/ a/ Pressão de dissociação de Cu_2O a 1000°C(ponto A): $P_{O2} = 10^{-7}$ atm

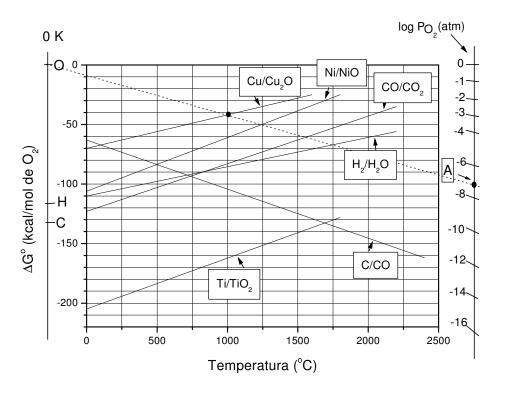


Fig.3

2CuO (s) \Leftrightarrow Cu₂O (s) + ½ O₂ (g) $\Delta G^{\circ} = (34950 + 6.1 \times 1273.log 1273 - 44.3 \times 1273).4.18 = 11144 J = -RT ln P_{O2}^{1/2}$ $<math>\Rightarrow$ P_{O2} = **0.122** atm

P < 10 ⁻⁷ atm	10 ⁻⁷ < P < 0,122 atm	P > 0,122 atm	
Cu O ₂	O ² no	CuO Oo Oo Oo Oo	

b/ O óxido Cu_2O é do tipo-p, os defeitos sendo lacunas catiónicas majoritariamente sem carga V_{Cu} e lacunas de elétrons \dot{h} .

Equilíbrio:
$$2Cu_{Cu} + 1/2 O_2 \iff Cu_2O + 2 V_{cu}$$

Constante de equilíbrio:
$$K = \frac{[V_{Cu}]^2}{P_{O2}^{-1/2}}$$

$$\Rightarrow$$
 [V_{Cu}] proporcional a P_{O2}^{1/4}

Como a constante de crescimento do filme k segue uma lei em função da pressão de O_2 similar à lei entre a concentração de defeitos iônicos e a pressão de O_2 ,

$$\Rightarrow$$
 k proporcional a $P_{O2}^{-1/4}$

Os dados da figura 4 mostram uma relação linear entre log k e log P_{O2} até cerca 0,1 atm e após 0,1 atm, k fica independente de P_{O2} . A partir desta pressão de 0,1 atm , próxima da pressão de 0,122 atm calculada anteriormente, ocorre a formação da camada externa de CuO.

Até 0,1 atm, os valores de k estão relacionados unicamente com o crescimento de Cu_2O . A partir dos dados abaixo desta pressão (figura 4), a inclinação da reta log k-log P_{O2} é :

$$\frac{\Delta \log k}{\Delta \log P_{O2}} = \frac{\log k_B - \log k_A}{\log P_{O2 B} - \log P_{O2 A}} = \frac{\log 8,1.10^{-8} - \log 4,1.10^{-8}}{\log 0,0831 - \log 0,0063} = 0,26$$

 \Rightarrow k proporcional a $P_{O2}^{0,26}$

Este valor é próximo de 1/4=0,25 obtido considerando, como defeitos iônicos majoritários, lacunas de Cu com nenhuma carga. Então, realmente os defeitos majoritários são lacunas V_{Cu} .

A partir de 0,1 atm, como se forma o óxido CuO, o crescimento de Cu_2O não depende mais da pressão externa de oxigênio. Ainda mais, como CuO possui poucos defeitos iônicos, este óxido quase não cresce. Assim, globalmente o crescimento da camada total de oxidação $(Cu_2O + CuO)$ acima de 0,1 atm não depende mais da P_{O2} .

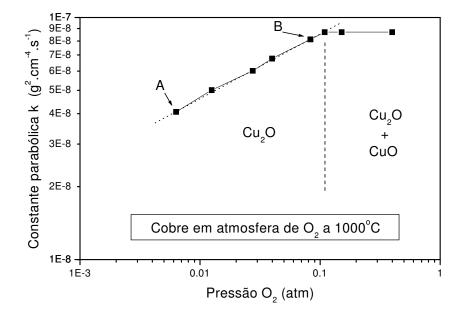


Fig.4