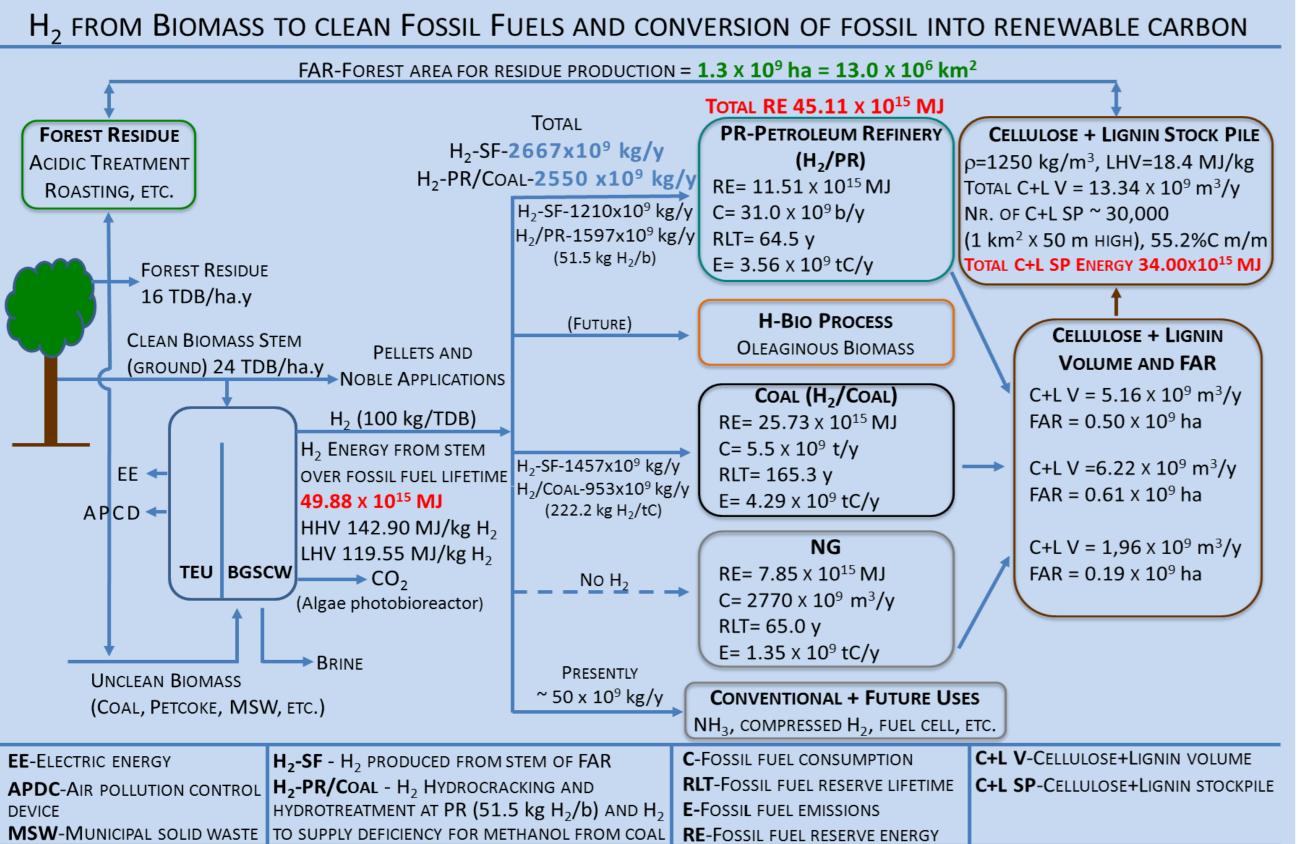
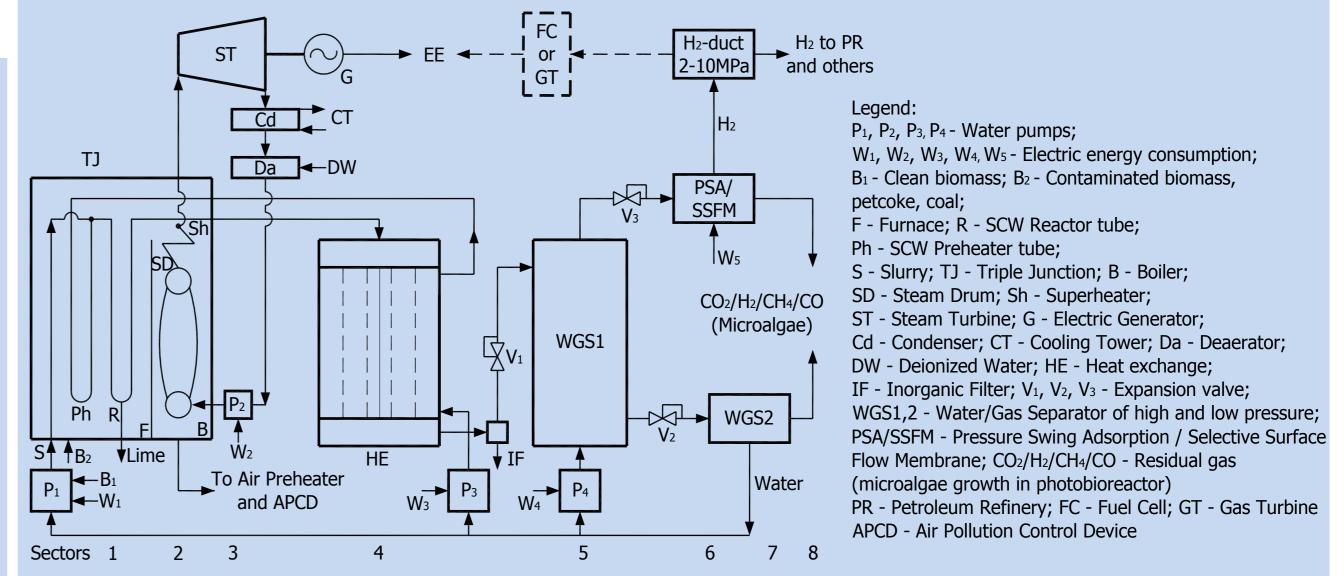
MATERIALS ENGINEERING DEPARTMENT DEMAR



SCRUTINY OF AVAILABLE AND NEW TECHNOLOGIES FOR TOTAL INTEGRATION OF RENEWABLE AND FOSSIL **ENERGY FOR A CLEAN AND SUSTAINABLE ENERGY SYSTEM - TIRFE**

DALTRO G. PINATTI pinatti@demar.eel.usp.br AND ROSA A. CONTE rosaconte@demar.eel.usp.br DEMAR EEL USP – LORENA – SP – BRAZIL


TIRFE CONCEPT

RENEWABLE ENERGY IS UNSUFFICIENT TO DEAL WITH THE DEMAND, AND FOSSIL ENERGY IS POLLUTANT. THIS WORK PRESENTS A NEW CONCEPT - TIRFE - AIMING TO A CLEAN AND SUSTAINABLE ENERGY SYSTEM

H₂-BGSCW/TEU Flow Chart: H₂ and electric energy generation by biomass

GASIFICATION IN SUPERCRITICAL WATER INTEGRATED WITH THERMOELECTRIC UNIT

STRATEGY OF DEVELOPMENT AND COMMERCIALIZATION

- ◆ MAJOR ENERGIES: CLEAN OIL, NATURAL GAS, CLEAN COAL PRODUCTS, BIOMASS PELLETS, EFFICIENCY **COLIC AND SOLAR ENERGIES SHOULD BE DIRECTLY CONNECTED TO ELECTRIC NETWORK OF THE ABOVE** SYSTEMS, WITHOUT STORAGE (HYDRAULIC, ETHANOL AND BIO-OIL ARE COMPLEMENTARY CONTRIBUTIONS)
- LARGE SCALE-HIGH PRODUCTIVITY REFORESTATION IN NON-AGRARIAN LAND, MAINLY IN TROPICAL COUNTRIES, FOR SELF-CONSUMPTION, AND BIOMASS PELLETS EXPORTATION TO CONSUMER COUNTRIES
- *Noble Applications of stem (H_2 , solid wood and panels, etc.) for good remuneration of **REFORESTATION AND EXTRACTIVE NATIVE FOREST**
- ✤ MODULAR H₂-BGSCW/TEU FOR SMALL/DISTRIBUTED ENERGY GENERATION (30 MW, 3,750 kgH₂/h) UP TO LARGE SCALE CAPTIVE PRODUCTION (600 MW, 75,000 kgH $_2$ /h)
- ACTIONS: 1. CONTRACTS BETWEEN PELLET PRODUCERS IN TROPICAL COUNTRIES AND CONSUMER COMPANIES; 2. BILATERAL AGREEMENTS BETWEEN COUNTRIES; 3. MULTILATERAL AGREEMENTS (UN)
- AGREEMENTS MUST COVER STEM BIOMASS PELLETS EXPORTATION, CARBON RETENTION AT C+L SP BY THE BIOMASS PRODUCER COUNTRY, AND PAYMENT OF FOSSIL CARBON POLLUTION FEES
- ◆ PAST, PRESENT AND FUTURE FOSSIL FUEL POLLUTERS (DEVELOPED AND DEVELOPING COUNTRIES) SHOULD PAY A DIRECT FEE FOR C+L SP FORMATION BY MAXIMUM MARKET CONTROL, AVERAGE CONSUMER ACCEPTANCE (HUMAN PREDATOR WILL ALWAYS RESISTS SUSTAINABILITY), AND MINIMUM, BUT NOT ZERO,

HISTORY OF AND PRESENT OPTION FOR SCW PROCESSING

SUPERCRITICAL WATER OXIDATION (SCWO 1980): APPLICATION IN INDUSTRIAL, MILITARY AND MUNICIPAL SOLID WASTE DESTRUCTION. HIGH CORROSIVE MEDIUM

CORROSION RATE OF SOME ALLOYS CAUSED BY SUPERCRITICAL WATER IN DIFFERENT ACID SOLUTIONS

	Alloy	_	Temperature or ΔT = T _F - T _I , ^O C	Α		SCW DENSITY	CORROSION RATE	
		P MPa		O ₂ wppm	Acid wppm	ρ (T _l)/ρ (T _F) kg/m³	ΜΑΧ. ΙΝ ΔΤ μ m/h	Annual μ m/y.wppm
	625	24	$T_{I} = 330 - T_{F} = 380$	16,000	HCL – 1,825	700 / 170	3.00	14.40
	Ti Gr2	24	0-600	48,000	HC∟ – 3,650	1,000 / 70.7	< 0.20	< 0.48
			0-600	96,000	H ₂ SO ₄ - 19,600	1,000 / 70.7	< 1.10	< 0.50
	E2535NbY	24	0 – 650		$HCL + H_2SO_4 = 50$	1000 / 64.8	≈ 0.10	≈ 15.0

 T_{r} (FINAL) – T_{I} (INITIAL) = ΔT = TEMPERATURE INTERVAL OF HIGH CORROSION RATE

 $T < T_{I}$ (low T, high SCW density), $T > T_{F}$ (high T, low SCW density): Negligible corrosion rate COMPOSITION, wt%, OF HPC E2535NbY: Fe (BAL), Cr 25.0, Ni 35.3, Mo< 0.23, Mn 1.02, Nb 0.87, C 0.41/0.44, Si 1.30/1.76, P< 0.025, S < 0.03, Ti 0.05/0.09, Y 0.035/0.085, Cost USD 25.50/kg HIGH CORROSION AT ΔT INTERVAL = 15.0 μ m/y.wppm x 50 wppm = 750 μ m/y; Ti Gr2 lining at ΔT interval in the PREHEATER/SLURRY JUNCTION, AND IN HEAT EXCHANGE

SUPERCRITICAL WATER POWER GENERATION CYCLES (590 °C, 35 MPa): IT IS THE CHOICE OF NEW COAL-FIRED UTILITY PLANTS WORLDWIDE; ppb RANGE IMPURITY IN THE SCW; USE OF MARTENSITIC/ FERRITIC 9% Cr AND ALLOY 625 ONLY IN THE SUPERHEATER

WATER CHEMISTRY LIMITS FOR SUPERCRITICAL FPPS AND BWRS (40-YEAR LIFETIME)

PLANT	рН	C ONDUCTIVITY μS/cm	Fe wppb	Cu wppb	Na wppb	Silica wppb	O wppb
BWR	5.5	0.1 - 0.3	0.5 – 10	0.1 - 1			200
FPP	9 - 10	0.1	10	1	2	5	< 100

BWR – BOILING WATER REACTOR (NUCLEAR); FPP – FOSSIL POWER PLANT

COMMAND-AND-CONTROL REGULATION (IPCC, COP'S, KYOTO AND RIO+10+20+n)

CELLULOSE + LIGNIN STOCKPILE (C+L SP)

CARBON RETENTION OF FOSSIL FUEL RESERVES (CFFR) IN 30,000 STOCKPILES OF 1 km² x 50 m HIGH C+L SP FORMATION DURING CFFR WEIGHTED AVERAGE LIFETIME (110.4 y) USING LANDFILL AND ROAD PAVIMENTATION TECHNOLOGY WITHOUT SOIL (ρ =1,250 kg/m³, 55.2% C m/m, σ =100 MPa, BOTTOM/TOP/LATERAL IMPERMEBILIZATION, pH < 4, 500 wppm SO_4^- FOR BIOMASS NON-DEGRADATION) **C+L SP** FROM BIOMASS RESIDUE (PREHYDROLYSIS, TORREFACTION, ETC.), MAINLY SITUATED NEAR TO REFORESTATION AREAS, AND PARTIALLY IN HIGH-ENERGY CONSUMER COUNTRIES, FOR ENERGY SECURITY ECONOMICAL CONTRIBUTION FOR C+L SP FORMATION:

- 20% FROM ETHANOL FROM SUGAR SOLUTION OF THE HYDROLYSATE: USD 10.00/t C+L
- 35% FROM SOLAR FARM AT THE TOP OF C+L SP DURING LIFETIME OF FOSSIL FUEL: USD 10.10/t C+L
- ENERGY SECURITY: 25% OF C+L HEATING VALUE: USD 9.20/t C+L
- GHG RETENTION/SEQUESTRATION (FOSSIL FUEL CARBON FEE: USD 10.00/t CO₂): USD 20.20/t C+L
- TOTAL: USD 49.50/t C+L, SUFFICIENT FOR C+L SP FORMATION
- **C+L SP** CONVERTS FOSSIL INTO RENEWABLE CARBON, AND CAN CLEAN PAST, PRESENT AND FUTURE GHG FROM DEVELOPED AND DEVELOPING COUNTRIES (EVERYONE SHOULD PAY FOR THE CO_2 POLLUTION) TOTAL CARBON STORED ON THE SOIL OF SHORT ROTATION FOREST IS SMALL: 150 tC/ha x 1.3 x 10⁹ ha = 195 x 10⁹ tC. This corresponds to 19.2% of 1,016 x 10⁹ tC retained at C+L SP

✤ PRESENT OPTION FOR H₂-BGSCW/TEU

•HIGH TEMPERATURE GASIFICATION WITH ACTIVATED CARBON + KOH CATALYST - $100 \text{ kg H}_2/\text{TDB}$) •Use of clean biomass (wood stem without bark), 5wt% db, ppm range impurity in the scw •Use of E25cr35NiNbY high temperature steel with recasting after average lifetime of 6 to 10 years; Ti gr2 lining at the high corrosion ΔT interval (300 °C – 400 °C) •E25Cr35NiNbY 100,000 h CREEP RUPTURE STRESS = 100 MPa AT 650 °C

TYPICAL COMPOSITION OF 5 wt% *Eucalyptus grandis* IN SCW (NO BARK, ~7 YEAR ROTATION)

ELEMENT CONCENTRATION, wppm												
Cl⁻	S	Р	К	Са	Mg	Na	Al	Mn	Si	Fe	Cu	Ni
40	10		40	27	9	12	2.7	0.85	0.65	0.18	0.06	0.006

CONCLUSION

- **TIRFE** ALLOWS THE USE OF ANY FORM OF ENERGY, ANYWHERE, AS LONG AS FOSSIL ENERGY PAYS A FEE FOR ITS CARBON RETENTION AND ENERGY SECURITY IN THE FORM OF C+L SP
- ✤ Reforestation area for c+l sp and H₂ production to clean oil and coal reserves needs 1.30 x 10⁹ ha as compared to 3.64 x 10⁹ ha of NATURAL FOREST, 0.85 x 10⁹ ha of PLANTED FOREST, PREDICTED BY UNEP 2011 GREEN SCENARIO 2050
- **BIOMASS PELLETS (MAINLY FROM THE TROPICS) SHOULD BE THE** 4th FORM OF ENERGY AND THE CONCEPT OF ENERGY SUBSTITUTION SHOULD BE REPLACED BY INTEGRATION
- **C+L SP** FOR GHG RETENTION CAN BE EFFECTUATED BY OTHER NOBLE USES OF STEM (SOLID WOOD AND PANELS, ETC.) INDEPENDENTLY OF H_2 PRODUCTION TO CLEAN OIL AND COAL DERIVATIVES