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TABLE 11.1
Concentration Equations in Terms of X,
for the General Reaction

VA + B = R 41,8
VA + B = R 41,8
i=B,RorS

(+ for product, ~ for reactant)

Batch

(=5
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eteen (3]

=V, for constant volume
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Note: When there is no volume change, €, = 0 and when
the system is isothermal and isobaric, P = Pand T= T,
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TABLE 11.4

Rate Equation in Terms of Partial Pressures for
an Illustrative Reaction A — R + 2§, and Its
Use in Extracting Kinetic Parameters

Reaction:*
A= R+2S
Rate equation:
d[a] "
==l ia 1
=g =k4] 0]
For isothermal constant-volume operation, Table 11.1 gives

V:Vn(l+E‘X4)(%)(TLn),or

@
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[4]=[a},(1-x1)
Combining Equations (2) and (3),

(4] mf[(;m)/m]

Now, 84 = 2, and pyg = Py (if pure A is used), thus

3B
la]= 2R,T
Combining Equations (1) and (5),
dP "
s (3P, - P
where
E=k(2R,T)™

Integration of Equation (6) for n = 1 gives

€]

@

[©]
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Thus, if the reaction is first order, either the differential method
[Equation (6)] or the integral method [Equation (8)] can be
used. I n - 1, only the differential method can be used.

* Classical example: gas-phase decomposition of di-r-butyl
peroxide (Peters and Skorpinski, 1965; see also Fogler, 1999;
Doraiswamy, 2001).
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TABLE 11.2

Different Definitions of the Reaction Rate

M

Reactor volume
caialyst volume
catalyst weight
catalyst surface
interfacial area
Interconversions:

Rate= -8 _y[4]"
M oa

Rate, r Rate constant, k
Symbol Units Symbol Units
Fery  molmireactors  k, (i reactorfmoley! (1/5)
i mol/m® cat s K (i reactorfmol ¢ (mol/m® cat) (1/s)
h molikg cat s K (i reactorfmol  (mol/kg cat) (1/5)
T mol/m? cat s ke (mol/m? cat) (n reactor/moly(1/s)
" molim? interface s K (lmoly (mol/m?) (1/s)

k=(l-g)k,
kdp.

&, = bulk voidage

pe

density of catalyst, kg/m?
interfacial area, m¥m?
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TABLE 11.3
Analytical Solutions (Design Equations) for Simple Reactions in a Batch Reactor (Also
Valid for PFR with t Replaced by )

Reaction Rate Equation Analytical Solution®
. T o
L AR £, = KA] hfln(lim ).[Ajn7(
2. 24-R —ry = KAP il =] a1
O =X [ Al 1+k[ALr
3 345R —ry = KAP ;fl]-l’“:;r;z
) [a] (4]
4 ASR —r, = KAl {7 =1] n21

5. A+BoRy,=1 —r, = KIAJIB]
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1. One irreversible monomolecular reaction

Alup

Differential rate equations:

dn

dr

d[B]
—qr = hlal

= —ki[A]

Integrated rate equations:

[A] = [Algexp (=ki1)
[B] = [Alo{1 — exp(=ki0)}

2. Two irreversible consecutive monomolecular reactions

Atiplc
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Differential rate equations:

d[A]

L

B oa) - kalm)
d[C]

Integrated rate equations:

[A] = [Algexp (=kit)

18] = (Bl exp (~ka) + 0 (enp (1) - exp (—hat)

k:
+w>

[C] = [Clo + [Blo(1 — exp (=kat) + [Al, (1 &k
2 — ki
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Differential rate equations:

I a4 m
B _ a1 - ko1m)

Integrated rate equations ([A] # 0, [Blo=0):

[A]l= [A]° {kz+k1 exp (—kyt) - exp (— kzz)}_ [A]" {k1+k, exp (= (ky + k)t
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5. One equilibrium followed by one irreversible consecutive reaction

ki
A=B2
ke

c



[image: image17.png]Differential rate equations:

d[A]

I ka1 +keim)
B ka1 - ko181 - kalB)
d[C]

& = ks[B]

Integrated rate equations ([A]y # 0, [B]o=[Clo=0):

(A= 120 = ) exp (010 = O = k- exp (a0}

A k
[B] = [ ]" S —{exp (=hit) — exp (420}
(€= [Ala{ v -exp(—)q!)}
M =05p-q)
A =050p+q)
Ady = kiks

p=hkitk+ki=A+1
a=/(F —kk)



[image: image18.png]6. Two reversible consecutive monomolecular reactions

ki ki
AZ=B=C
ke k2



[image: image19.png]Kinetic Modeling of Reactions in Foods

Differential rate equations:

A k() 4 kolB)

B k4] - ko8]~ ks8] + ki (C)
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Integrated rate equations ([A]y # 0, [B]o=[Clo=0):

[A] = [A]g{T\ + Taexp (=Ast) + Tz exp (A1)}
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Differential rate equations:

A A1+ kalB] - k)
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Integrated rate equations ([A]y # 0, [B]y =0, [C]y=0):
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Integrated rate equations ([A]y 0, [Blo=0, [Clo=0):
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9. Irreversible bimolecular reaction
A+BLC

The differential rate equations are

- —k[A][B]

d[C]
—ar = KallB]
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A special case is for [Alo=[Blo, [Cly=0:
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=
and for 2A — C with [C]y=0:
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11. First-order kinetics with respect to one product and one reactant (autocatalysis).
This is the situation where a product reacts with the reactant; it is thus autocatalytic.

aA + other reactants — pP + other products
The rate law is now:

1d[P]
P K[A] [P]

and integration gives:

1 [P)/1A] _

__ ln—E Ky
PTATe = alPls "L AL -
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aA + bB + ¢C + other reactants — products

This is an overall order of 3, but first order in each of the reactants.
The rate law is now:

d[A]

g = MAlBIIC]

Integration of this rate law gives:

1 {_ a W AVICL b [B]/[ﬂ}
b[Alo—alBlo | c[Alo—alCl  [Alo/[Clo * [B[—bIC]  [Bo/[Clo

This type of reactions is very rarely found. The author is not aware of such a reaction in a food,
so it is only reported here for the sake of completeness.

. Second order in one reactant and first order in another.

aA + bB + other reactants — products
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