Simuladores de Processo

Reatores

Os simuladores de processos mais comuns, apresentam tipos diferentes de reatores, que devem ser utilizados dependendo do problema em questão. Os tipos de reatores mais comuns nos simuladores são os reatores de conversão, de equilíbrio, de Gibbs, CSTR e PFR.

A seguir serão apresentados exemplos ilustrativos da simulação desses reatores no simulador de processos DWSIM.

Reator de Equilíbrio

Considere a reação de esterificação entre o etanol e o ácido acético:

 $CH_{3}COOH + C_{2}H_{5}OH \Leftrightarrow CH_{3}COOC_{2}H_{5} + H_{2}O$ $A + B \Leftrightarrow C + D$

Considere que uma corrente de 1 mol/s a 353.15 k e 200kPa, contendo 50% (molar) de etanol, 40% (molar) de ácido acético e 10% (molar) de água. Estime a fração molar de acetato de etila e a conversão do ácido acético no equilíbrio utilizando o reator de equilíbrio, sendo a constante de Equilíbrio (*K*) calculada a partir das atividades (*a*) dos componentes na fase líquida no equilíbrio:

$$K = \frac{a_C \cdot a_D}{a_A \cdot a_B}$$

Reator de Equilíbrio

Abra o DWSIM e insira os componentes (ethanol, acetic acid, ethyl acetate e water), clique em [Next] e adicione o pacote termodinâmico NRTL e clique em [Next].

Simulation Configuration Wizard

Compounds

Introduction

- Compounds
- Property Packages
- System of Units

Select the compounds that you want to add to the simulation. Use the textbox to search and select a compound in the list. Click "Next" to continue.

Added	Name	CAS Number	Formula	Source Database	СР	^
\checkmark	Acetic acid	64-19-7	снзсоон	ChemSep		
	Ethanol	64-17-5	СНЗСН2ОН	ChemSep		
\checkmark	Ethyl acetate	141-78-6	CH3COOC2H5	ChemSep		
	Water	7732-18-5	нон	ChemSep		
	Carbon tetrachloride	56-23-5	CCI4	ChemSep		

Property Packages

Introduction

Search

- Compounds
- Property Packages
- System of Units

Select and Add the Property Packages that you want to use in your simulation. The first on the li flowsheet objects. Click "Next" to continue.

Available Property Packages	Added Proper	ty Packages —	
Grayson-Streed	^	Name	Туре
IAPWS-08 Seawater Lee-Kesler-Plöcker		NRTL (1)	NRTL
Modified UNIFAC (Dortmund)			
Modified UNIFAC (NIST)			
NRTL			
Peng-Robinson (PR)			

Reator de Equilíbrio

Escolha o sistemas de unidades (SI) e clique em [Finish].

System of Units

- Introduction
- ✓ Compounds
- Property Packages
- System of Units

Select the desired System of Units for your simulation. You can change individual units by selecting a custom system (other than SI, CGS or ENG).

Click "Finish" to exit the wizard and start designing the simulation model.

System of Units SI		~	Clone Create		
Property	Unit		Property	Unit	^
Temperature	К	~	Pressure	Pa	~
Mass Flow Rate	kg/s	~	Molar Flow Rate	mol/s	~
Volumetric flow rate	m3/s	~	Specific Enthalpy	kJ/kg	~
Specific Entropy	kJ/[kg.K]	~	Molecular Weight	kg/kmol	~
Density	kg/m3	~	Surface Tension	N/m	~
Heat Capacity	kJ/[kg.K]	~	Thermal Conductivity	W/[m.K]	~
Kinematic Viscosity	m2/s	~	Dynamic Viscosity	Pa.s	~
Delta-T	К.	~	Delta-P	Pa	~
Length/Head	m	~	Energy Flow	kW	~
Time	s	~	Volume	m3	~
Molar Volume	m3/kmol	~	Area	m2	~
Diameter/Thickness	mm	~	Force	N	~ ~

Reator de Equilíbrio

Antes de iniciar a construção do diagrama de fluxo, deve-se criar o pacote de reações a ser utilizado no reator, no caso do CSTR o pacote deve conter a reações tipo cinética. Para acessar as configurações gerais a serem consideradas na simulação deve-se clicar em [Edit] e selecionar a opção [Simulation settings].

DWSIM - [MySimulation 26]

EII DWSIW	- Liviy.	Simulation	20]							
🚹 File	Edit	Insert	Tools	Spre	adsheet	Dynami				
🗅 卢 📭		Undo								
Flowsł	2	Redo								
Control F	dó	Cut select	ted objec	ts						
		Copy sele	cted obj	ects						
	Ē.	Paste obj	Paste objects							
	\times	Remove s	elected o	bjects	5					
	2	Clone sel	ected obj	ects	Ctrl+Shif	t+C				
	3	Recalcula	te object		Ct	rl+R				
		Export da	Export data to Clipboard							
	۲	Simulatio	n Setting	s	А	lt+S				
		General S	ettings							

Reator de Equilíbrio

Settings

retiradas).

Escolha a aba [Reactions] e, se desejar, edite o Default Set e clique em [OK] (obs. Todas as reações que você criar irão automaticamente para esse conjunto padrão, caso sejam criadas reações que não sejam utilizadas nesse conjunto, elas devem ser

		D		-				
Compounds	Thermodynamics	Reactions	Mass and Ener	rgy Balances	System of Units	Floating Tables and Property Lists	Miscelaneous	
Reaction S	ets			Chemical F	Reactions			
o 🗟 🕻				o 🗟 🕻) 🤤 🗘 💭			
Name Default Set		DWSIM - Identificat Name Descriptio	Reaction Set E ion RE e RG Default Read	ditor ction Set		τ		×
			action		Туре	Equation	Active Seq.	
						Cancel	ОК	

Reator de Equilíbrio

Em Chemical Reactions, clique em (+) e selecione clicando em [Equilibrium].

Em Identification você pode editar o nome e a descrição para a reação.

Identification	1	
Name	EQ	
Description	Reações utilizadas nos reatores de Equilíbrio e de Gibbs	

Reator de Equilíbrio

Selecione os componentes envolvidos na reação (em Include). Indique o componente base (BC, ácido acético neste caso). Coloque os coeficientes estequiométricos (valores negativos para reagentes e positivos para produtos).

Components/Stoichiometry									
Name	Molar Weight	∆Hf (kJ/kg)	Include	BC	Stoich. Coeff.				
Ethanol	46.0684	-5100.02	\checkmark		-1				
Acetic acid	60.052	-7207.09	\checkmark	\checkmark	-1				
Ethyl acetate	88.1051	-5045.11	\checkmark		1				
Water	18.0153	-13422.7	\checkmark		1				
Stoichiometry OK Balance Heat of Reaction (kJ/kmol_BC) (25°C) -18564									
quation CH3CH2OH + CH3COOH <> CH3COOC2H5 + HOH									

Reator de Equilíbrio

Adicione os parâmetros de equilíbrio da reação, que neste caso utilizou como base para o cálculo as atividades na fase líquida, cuja constante foi estimada para o intervalo de temperaturas entre 333,15 K e 373,15 K. Clique em [OK].

- Equilib	rium Reactior	Parameters -								
Basis	Activity		✓ Phase	Liquid	~	Tmin (K) 3	33.15 1	Гтах (К)	373.15	
Approa	ch (%)	0								
Equilibrium Constant (Keq)										
○ Calculate from Gibbs Energy of Reaction DelG_R (kJ/kmol_BC) (25°C) -14240										
⊖ T	Function.: In	Keq <mark>[</mark> f(T)] =						-	T in K	
Co	Constant Value									
Use '.'	as the decim	al separator or	n math expre	ssions.		Ca	ncel		ок	

Reator de Equilíbrio

Arraste para o diagrama de fluxo e configure uma corrente de alimentação de 1 mol/s a 353.15 k e 200kPa, com frações molares de 0.5 de etanol, 0.4 de ácido acético e 0.1 de água.

General Info							
Object	F	*					
Status	Calculated (23/06/2020 09:16:24)	Image: A start of the start					
Linked to							
Property Package Setting	gs		F				
Property Package	NRTL (1)	×					
Flash Algorithm	Default	×					
Input Data Results Ar	nnotations Dynamics Floating Tal	Stream Conditions	Compound Amounts				
Stream Conditions Co	mpound Amounts		Basis Mole	Fractions			
Flash Spec	Temperature and Pressure (TP)	~	Colored				
Temperature	353.15	К ~	Solvent				
Pressure	200000	Pa 🗸 🗸	Compound	Amount			
Mass Flow 0.0530602		kg/s 🗸	Ethanol		0.5		
Molar Flow 1		mol/s ~	Acetic acid		0.4		
Volumetric Flow		m3/s ~	Ethyl acetate		0		
Volumente How	0.100702.00	110/0	Water		0.1		

Reator de Equilíbrio

Arraste um reator de equilíbrio (isotérmico) e configure como mostrado na figura.

RE-001 (Equilibrium Reacto	и) ф	×	Flowsheet Dynamics
General Info		^	Control Panel Mode Search
Object F	RE-001		
Status C	Calculated (23/06/2020 09:20:20)		
Linked to			
Connections			v v
Inlet Stream	F 🗸 🖌		F E -
Outlet Stream 1	V ~ ¥		RE-001
Outlet Stream 2	L 🗸 🖌		Eeq
Energy Stream	Eeq 🗸 🤞	I	
Calculation Parameters			
Parameters Convergence			
Reaction Set	RE e RG 🗸 🗸		Streams Pressure Changers Separa
Calculation Mode	Isothermic \checkmark		
Minimization Method	\sim		Conversion Continuous Baastor Stirred Tank
Outlet Temperature	298.15 К 🗸		Reactor
Pressure Drop	0 Pa ~		Integrator Controls
Property Package Settin	igs		Schedule
Property Package	NRTL (1) 🗸 🔅		
Flash Algorithm	Default 🗸 🧔		

Reator de Equilíbrio

Verifique os resultados de conversão (no reator de equilíbrio) e as frações molares na saída de líquido.

Reator

Saída de Líquido (L)

Results					Input Data	Results	Annotations	Dynamics	Floatin	g Tables	
General	Reactions	Conversions			Stream Co	nditions	Compound An	nounts			
Compou	ind		Conversion (%)								
Ethanol				32.4837	Basis	Mole I	Fractions				\sim
Acetic ac	id			40.6047	Solvent						\sim
					Compo	und	Amou	int		Total: 1	
					Ethanol			0.337	58133	Norma	lize
					Acetic a	cid		0.237	58133	Faual	
					Ethyl ac	etate		0.162	41867	Equal	ze
					Water			0.262	41867	Clea	r
										Accept Ch	anges

Reator de Gibbs

Vamos agora utilizar o reator de Gibbs para comparar a resposta no equilíbrio.

Primeiramente clone a corrente de alimentação F (clicando com o botão direito do mouse sobre a corrente F). Arraste um reator de Gibbs (isotérmico) e configure para calcular a extensão da reação (calculate reaction extents).

Note que o reator não converge para uma resposta, devendo ser fornecida uma condição inicial.

RG-006 (Gibbs Reactor)		η×	Flowsheet	Dynam
General Info		^	Control Panel M	ode Search
Object	RG-006			
Status	Error (The Element Matrix is not defined.)	•		
Linked to				
Connections				
Inlet Stream	F (2) 🗸 ≽ 🎽			
Outlet Stream 1	VG 🗸 🖌			
Outlet Stream 2	LG 🗸 🗲 🎽			VG
Energy Stream	EG 🗸 🖌	•	F(2)	
Calculation Parameters			RG-0	06
Parameters Compounds	Bements Initial Estimates Convergence		EG	
Reaction Set	RE e RG 🗸 🗸		Streams Pressure	Changers Se
Calculation Mode	Isothermic \checkmark		-	
Minimization Method	Calculate Reaction Extents $~~$		Conversion	Continuou Stirred Tap
Outlet Temperature	298.15 K 🗸		Reactor	Surreu lan
Pressure Drop	0 Pa ~		Integrator Control	s ::::::::::::::::::::::::::::::::::::
Property Package Set	tings		Schedule	
Property Package	NRTL (1) 🗸 🧼			
Flash Algorithm	Default 🗸 🌼			2 -

Reator de Gibbs

No reator, em Calculation Parameters configure a estimativa inicial a partir dos valores inicialmente apresentado nas saídas criadas.

Selecione os componentes:

Em initial estimates selecione [Copy from outlet liquid stream]

Parameters	Compounds	Elements	Initial Estimates	Convergence				
Configura	tion							
Copy from	Copy from inlet stream Copy from outlet liquid stream							
Copy from outlet vapor stream								
Initial Esti	mates							
Compour	nd		Estimates for Ou Flows (mol/s)	utlet Mole	^			
Ethanol				4.71163				
Acetic aci	id			4.71163				
Ethyl acet	tate			4.71163				
Water				4 71163	Y			

Reator de Gibbs

Clique com o botão direito do mouse sobre o reator de Gibbs e selecione [Recalculate]. Observe que F (2) está azul antes de clicar em Recalculate, caso ela esteja vermelha, basta clicar com o botão direito do mouse sobre a corrente e em [Recalculate], depois é só seguir para o recálculo do reator de Gibbs. O resultado esperado é apresentado na figura da direita.

Reator de Gibbs

Verifique os resultados de conversão (no reator Gibbs) e as frações molares na saída de líquido.

Reator de Gibbs

Saída de Líquido (LG)

Results		Input Data Results	Annotations Dynamics	Floating Tables
General Reactions Conversions		Stream Conditions	Compound Amounts	
Compound	Conversion (%)			
Ethanol	32.4837	Basis Mole	Fractions	~
Acetic acid	40.6047	Solvent		~
		Compound	Amount	Total: 1
		Ethanol	0.337	/58133 Normalize
		Acetic acid	0.237	58133 Equaliza
		Ethyl acetate	0.162	41867
		Water	0.262	41867 Clear
				Accept Changes

Obs. Os resultados para o reator de Gibbs e de Equilíbrio são idênticos, como esperado para este caso

Reator de Conversão

Utilizando como base a conversão do equilíbrio (40.6% em ácido acético) vamos agora configurar um reator de conversão com uma conversão de ácido acético de 40%, ou seja, 0.6% inferior àquela do equilíbrio. Para isso deve-se criar um novo (clicando em (+) no Reactions Sets) conjunto de reações com a reação de conversão. Clique em OK.

Compounds Thermo	dynamic	es Rea	actions	Mass and Energy	gy Balances	System of Ur	nits Float	ing Tables and Pro	perty Lists	Miscelan
Reaction Sets	DWS	DWSIM - Reaction Set Editor								
o 🕼 🗋 🤤	lden	tification	I							_
Name	Nam	e	RC							
RE e RG	Des	cription	Reaçã	io utilizada na cor	nfiguração do	reator de con	versão			
	Rea	ctions								
	0	Reacti	on		Туре	Ed	quation		Active	Seq.
								Cancel	0	к

Reator de Conversão

Clique em (+) em Chemical reactions e selecione [Conversion] para configurar uma reação de conversão .

Reator de Conversão

Clique em (+) em Chemical reactions e selecione [Conversion] para configurar uma reação de conversão (reação em fase líquida, com 40% de conversão com relação ao ácido acético).

Edit Conversion Reaction					×				
Identification									
Name CONV									
Description Reação de conversão	Reação de conversão								
Components/Stoichiometry									
Name	Molar Weight	∆Hf (kJ/kg)	Include	BC	Stoich. Coeff.				
Ethanol	46.0684	-5100.02	\checkmark		-1				
Acetic acid	60.052	-7207.09	\checkmark	\checkmark	-1				
Ethyl acetate	88.1051	-5045.11	\checkmark		1				
Water	18.0153	-13422.7	\checkmark		1				
Stoichiometry OK	Balance Heat d	of Reaction (kJ/kmol	_BC) (25 °C	C) -185	64				
Equation CH3CH2OH + CH3COOH	> CH3COOC2H5 + H	ОН							
Conversion Reaction Parameters									
Base Comp Acetic acid			Phase	Liquid	~				
Conversion [%, f(T)] = 40					T in K				
Use '.' as the decimal separator on the	Use '.' as the decimal separator on the conversion expression. Cancel OK								

Reator de Conversão

No reaction set, selecione o conjunto para os reatores de equilíbrio e retire a seleção da reação de conversão. Clique em OK.

Reaction Name RE e RG RC	DWS Ider Nar Des	SIM - Re ntification me scription	action Set Editor RE e RG Default Reaction Set					
	Rea	actions						
	\odot	Reaction		Туре	Equation	Active	Seq.	
	٢	EQ		Equilibrium	CH3CH2OH +	\checkmark	0	
		CONV		Conversion	CH3CH2OH +	- CH3COOH> C		0
						Cancel	0	ĸ

Reator de Conversão

No reaction set, selecione o conjunto para o reator de conversão e adicione (+) a reação de conversão. Clique em OK.

WSI	M - Reaction Set Editor								
Ident	tification								
Name RC									
Description Reação utilizada na configuração do reator de conversão									
Rea	ctions								
) 🖯	Reaction	Туре	Equation	Active Seq.					
)	CONV	Conversion	CH3CH2OH + CH3COOH> C	✓ 0					
			C	01/					

Reator de Conversão

Clone a corrente de alimentação de um dos reatores de equilíbrio, arraste e configure um reator de conversão.

RC-011 (Conversion Reac	tor) ·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×	Flowsheet	Dyna	imics Manager
General Info			^	Control Panel Mo	de Sear	:h
Object	RC-011					
Status	Calculated (23/06/2020 11:08:27)	~		_		
Linked to				_		
Connections					98	
Inlet Stream	F (3)	× 差 🔊		F (3)	С	
Outlet Stream 1	VC	✓			RC-011	LC
Outlet Stream 2	LC	~ <i>š</i>		FC		
Energy Stream	EC	✓ <i>≶</i>		20		
Calculation Parameters						
Parameters						
Reaction Set	RC	\sim		Streams Pressure C	hangers	Separators/Tank
Calculation Mode	Isothermic	~		2		+

Reator de Conversão

Reator de conversão

Verifique os resultados de conversão (no reator de conversão) e as frações molares na saída de líquido.

Saída de Líquido (LC)

Results	esults			Amounts	
General Reactions Conversions		Baeie	Mole Fractions		
Compound	Conversion (%)	01.			
Ethanol	32	Solvent			
Acetic acid	40	Compound	1	Amount	
		Ethanol			0.34
		Acetic acid			0.24
		Ethyl acetat	te		0.16
		Water			0.26

Obs. Quando a conversão de um determinado reator de uma planta (CSTR ou PFR) for conhecida pode-se utilizar um reator de conversão para representá-lo, por se tratar de um reator mais simples de configurar e, também, com melhor convergência. Porém, o reator de conversão possui a desvantagem de não fornecer informações sobre as dimensões do reator.

Reator CSTR

Vamos agora considerar que deseja-se estimar o volume de um reator contínuo de mistura perfeita (CSTR), desprezando a massa de catalisador utilizada no processo, para que se tenha uma conversão de 40% do ácido acético (fração molar de ácido acético na saída igual a 0,24). Considere as cinéticas de ordem direta (r_{do}) e reversa (r_{ro}) apresentada nas equações:

$$r_{do} = k_1[A][B]$$

$$r_{ro} = k_2[C][D]$$

As constantes cinéticas ($k_1 e k_2$) são obtidas a partir da equação de Arrhenius:

$$k_1 = Ae^{\frac{-E}{RT}}$$
$$k_2 = A'e^{\frac{-E'}{RT}}$$

Os valores estimados para as constantes cinéticas, para as concentrações em mol/cm³ e as velocidades em cm³/(mol s) são:

A = 46617 cm³/(mol s), A' = 11713, E = E' = 84878 J/mol

Em Identification você pode editar o nome e a descrição para a reação.

Reator CSTR

Em Reactions Set, clique em (+) e configure. Clique em [OK].

Reaction Sets				-Chemical F	Reactions		
o 🗟 🗋 🤤				0 🗟 🕻) 😑 🔾 💭		
Name	P	line -		Mana		Т	
RE e RG	C DWS	IM - Re	action Set Edi	itor			
RC	F Ider Nan Des	ntification ne cription	CSTR e PFR Reação cinéti pistonado (PFI	ca utilizada R)	no reator contínuo de	e mistura perfeita (CSTR) e tubular o	le fluxo
	Rea	Reactions					
		Reacti	on		Туре	Equation	Active

Em Chemical Reactions, clique em (+) e selecione clicando em [Kinetic].

Reator CSTR

Em Identification você pode editar o nome e a descrição para a reação.

Add New Kinetic Reaction

-Identification	1
Name	Kinetic
Descriptio	Reação considerada no CSTR e/ou PFR

Reator CSTR

Selecione os componentes envolvidos na reação (em Include). Indique o componente base (BC, ácido acético neste caso). Coloque os coeficientes estequiométricos e indique a ordem das reações direta (DO) e reversa (RO) com relação a cada componente.

 $\begin{aligned} r_{do} &= k_1[A][B] \\ r_{ro} &= k_2[C][D] \end{aligned}$

Components, Stoichiometry and Re	eaction Orders							
Name	Molar Weight	∆Hf (kJ/kg)	Include	BC	Stoich. Coeff.	DO	RO	
Ethanol	46.0684	-5100.02	\checkmark		-1	1	0	
Acetic acid	60.052	-7207.09	\checkmark	\checkmark	-1	1	0	
Ethyl acetate	88.1051	-5045.11	\checkmark		1	0	1	
Water	18.0153	-13422.7	\checkmark		1	0	1	
Stoichiometry OK Balance Heat of Reaction (kJ/kmol_BC) -18564								
Equation CH3CH2OH + CH3COOH <> CH3COOC2H5 + HOH								

Reator CSTR

Adicione os parâmetros da cinética de reação, que neste caso utilizou como base para o cálculo da velocidade as concentrações na fase líquida, cujas constantes foram estimadas pela literatura citada na descrição do problema para o intervalo de temperaturas entre 33315 K e 373,15 K e considerando unidades de concentração em mol/cm³, de velocidade em mol/[cm³ s] e de energia de ativação em J/mol.

Kinetic Reaction Para	meters								
Base Component	Acetic coid	Basis	Molar Concentrations	~	Tmin (K)	333.15			
base component	Acelic acid	Phase	Liquid	~	Tmax (K)	373.15			
Direct and Reverse Reactions Velocity Constant (k and k')									
Direct Reaction	Arrhenius	A 466	617	Ε [34878	J/mol	~		
	O User-Defined: f(T), T in K								
Reverse Reaction	Arrhenius	A' 117	713	E' 8	34878	J/mol	~		
	O User-Defined: f(T), T in K								
Amount Units mol/	/cm3		 Velocity Units 	l/[cm3.s]			~		

Reator CSTR

Desative a reação cinética do conjunto de reações dos reatores de equilíbrio. Clique em [OK].

Name	P		N		T			
RE e RG	E DWS	IM - Reaction	Set Editor					×
RC	F Ide	ntification						
CSTR e PFR	F Nar	me REel	RG					
	Des	scription Defau	t Reaction Set					
	Rea	actions						
	0	Reaction		Туре	Equation		Active	Seq.
	9	EQ		Equilibrium	CH3CH2OH	+ CH3COOH <>	\checkmark	0
		CONV		Conversion	CH3CH2OH	+ CH3COOH> C		0
		Kinetic		Kinetic	СНЗСН2ОН	+ CH3COOH <>		0
						Cancel	C	ж

Reator CSTR

Insira (+) a reação cinética no Reaction set editor criado para os reatores CSTR e PFR.

Reaction Sets		Chemical Reactions		
o 🗟 🗋 🤤		0 🗟 🗈 🔾 🔾)	
Name	P	News	Т	E
RE e RG	DWSIM - Reaction Set	Editor		×
RC	F Identification			
CSTR e PFR	F Name CSTR e PF	R		
	Description Reação cir pistonado (nética utilizada no reator cont ín (PFR)	uuo de mistura perfeita (CSTR) e	tubular de fluxo
	Reactions			
	Reaction	Туре	Equation	Active Seq.
	G Kinetic	Kinetic	СНЗСН2ОН + СНЗСООН	<-> ☑ 0
	Add Reaction			

Reator CSTR

Clone uma das correntes de alimentação já utilizadas recalcule a corrente (clique com o botão direito do mouse sobre a mesma) e arraste e configure um CSTF (inicialmente de 1m³) no diagrama de fluxo (despreze a quantidade de catalisador) Observe que para 1 m³ conversão de ácido acético foi maior que 40%. Pode-se análise de fazer uma sensibilidade da conversão para o volume do reato variando entre 0.001 m³ e 1 m³ para se ter uma boa estimativa inicial do volume do reator.

	CSTR-016 (Continuous St	irred Tank Rea	actor (CSTR))	00000000	: 다)	x	Flowsheet	Dyna	mics Man	ager
	General Info					^	Control Panel Mo	de Seard	:h	
e	Object	CSTR-016								
5,	Status	Calculated (23	3/06/2020 13:	13:48)	Image: A start and a start					
é	Linked to			_				6	\rightarrow	
	Connections								-	
0	Inlet Stream	F (4)	×	/ 🦻	\$		E (4)		Vcstr	
e	Outlet Stream 1	Lostr	`	/ 🦻	S		F (4)			
R	Outlet Stream 2	Vcstr	×	/ 🦻	S					
0	Energy Stream	Ecstr	\ \	/ 🦻	S				3	_
e	Calculation Parameters							CSTR-0	16	Lostr
).	Reaction Set	CSTR e Pl	FR		\sim					
а	Calculation Mode	Isothermic			~					
0	Outlet Temperature		353.15	K	\sim		Ecstr			
e	Reactor Volume		1	m3	\sim		Streams Pressure	Changers 3	Separators/	Tanks
e	Headspace		0	m3	\sim					-*~
0	Reactor Pressure Drop		0	Pa	\sim		Conversion	Continue		Equilit
r	Catalyst Amount		0	kg	\sim		Reactor	Stirred Ta	ink	Read
e	Results						Integrator Controls			
а	General Reactions Co	nversions								
e	Compound		Conversion (%)			Schedule			
	Ethanol			37.95	25					
	Acetic acid			47.44)7			3		
	Water			189.7	53				00-	00.00

eacto

Reator CSTR

Clique em [Optimization] e Selecione [Sensitivity Analysis]. Em [Sensitivity Studies] clique em [New].

Sensitivity Studies	Independent Variables	Dependent Variables	Results	Chart		
Case Manager					Name and D	escription
New	SACase0				Name	SACase0
Сору					Description	
Save						
Delete						

Escolha como variável independente o volume do CSTR e configure.

Sensitivity Studies	Independent Variables	Dependent Variables Results Chart
-Independent Vari	iable 1	
Object CSTR-()16 v Prope	rty Volume 🗸
Lower Limit	0.001 Number of P	oints 20 🚖 Unit m3
Upper Limit	1 Current Valu	e 1

Reator CSTR

Adicione (+) como variável dependente a conversão do ácido acético no CSTR.

Sensitivity Studies	Independent Varia	bles Dependent	/ariables Result	ts Chart
Variables				
Add/Remove Va	riables			
0 🔾				
0	bject	Proper	ty	Unit
1 CSTR-01	16 V Acet	ic acid: Conversion		~

Reator CSTR

Em Results Clique em [Start Sensitivity Analysis], verifique os resultados na Tabela e no Chart. Observe que a conversão de 40% é obtida no intervalo entre 0.57 e 0.64 m³.

sitivity Studies Independent Variables	Dependent Variables	Results Chart			
Start Sensitivity Analysis	Break Ca		Send D	Data to New Worksheet	Send Data to R
esults					
CSTR-	016 - Volume (m3)			CSTR-016 - A	cetic acid: Conversion (%)
526789			37.5352	2	
579368			39.0764	4	
631947			40.4663	3	
684526			41.732	3	
737105			42.8863	3	
789684			43.947	1	
X-Axis CSTR-016 - Volume (m3) Y-Axis CSTR-016 - Acetic acid: Conversion	R016 - Acetic acid: Conversion (%)		SACase0		

0.4

0.6

CSTR-016 - Volume (m3)

0.8

1.0

1.2

0.0

0.2

Reator CSTR

Antes de calcular o volume do reator, pode-se primeiro modificar o volume para um valor mais próximo daquele a ser obtido, por exemplo 0.6 m³, pois a função de ajuste partirá desse valor.

CSTR-016 (Continuous Stir	red Tank Reactor (CST	TR)) :::::::::::::::::::::::::::::::::::		. 4 х	Flowsheet	Dynamics	Manage
General Info				^	Control Panel M	lode Search	
Object	STR-016						
Status C	alculated (23/06/2020	13:56:05)		Image:			
Linked to			_	_			
Connections							
Inlet Stream	F (4)		~ 🗲 👔	S	F (4)	Vcs	tr
Outlet Stream 1	Lostr		× 🌾 👔	S			
Outlet Stream 2	Vcstr		× 🦻 👔	\$			\rightarrow
Energy Stream	Ecstr		× 🗲 👔	S			Landa
Calculation Parameters					0	STR-016	LCST
Reaction Set	CSTR e PFR			~			
Calculation Mode	Isothermic			~			
Outlet Temperature		353.15	K	\sim	Ecstr		
Reactor Volume		0.6	m3	~	Streams Pressure	Changers Separ	rators/Tan
Headspace		0	m3	~	1		(
Reactor Pressure Drop		0	Pa	~			
Catalyst Amount		0	kg	~	Input Box	Switch	Contro
Results					Integrator Control	5 0000000000000000000000000000000000000	
General Reactions Con-	versions						
Compound		Conversion (%)			Schedule		
Ethanol			31.711	13			
Acetic acid			39.639	91		2	
Water			158.55	56			00.00.0

Reator CSTR

Pode-se agora adicionar um ajuste ao diagrama de fluxo para ajustar a conversão desejada do ácido acético (variável controlada, set point = 40%) ao volume do (variável reator manipulada). Como sabe-se que este volume encontra-se entre 0,57 e 0.64 m³ pode-se utilizar 0 método Brent e uma tolerância de 0,001.

ADJ-020 (Controller Blo	ock) ·····	4 x	Flowsheet	Dynamics Manag
General Info		^	Control Panel Mo	ode Search
Object /	ADJ-020			
Linked Objects				\longrightarrow
Manipulated Object	CSTR-016	\sim		Veetr
Manipulated Property	Volume	\sim	F (4)	Vestr
Current Value	0.6 m3			
Controlled Object	CSTR-016	~		
Controlled Property	Acetic acid: Conversion	\sim	C	STR-016 Lostr
Current Value	39.6391 (+38.6391) %			A
Reference Object		\sim	Ecstr A	DJ-020
Reference Property		\sim	Streams Pressure (Changers Separators/Ta
Current Value			<u>1</u>	
Parameters				0.11
Solve Globally			Input Box	Switch Cont
Set-Point/Offset (Contr	olled Property)	40	Integrator Controls	; :
Tolerance (Maximum E	irror)	0.001	Schedule	
Op	oen Adjust Control Panel			

Reator CSTR

Clicando em Open Adjust Control Panel e escolhendo 100 iterações consegue-se ajustar o volume do reator.

Docking Image: I	ADJ-020 - Control Panel	×
Parameters Convergence method Secant Brent Max/Min Limits 0.64 0.57 Maximum iterations 100 Step size 0.1 Tolerance 0.001 Stop Results Value adjusted successfully. Adjust value 40 Iteration 34 of 100 Current error -0.00067038754485082 Graph Table Graph Table Graph Table 0.80 0.75 (g) 0.80 0.75 (g) 0.70 (g) 0.	Docking 🚭 🥶 💿 🚱 😍 🖶 🗈	💢 Close
Convergence method Secant Brent Max/Min Limits 0.64 0.57 Maximum iterations 100 Step size 0.1 Tolerance 0.001 Stop Results Value adjusted successfully. Adjust value 40 Iteration 34 of 100 Current error -0.00067038754485082 Graph Table	Parameters	
Maximum iterations 100 Step size 0.1 Tolerance 0.001 Stop Results Value adjusted successfully. Adjust value 40 Iteration 34 of 100 Current error -0.00067038754485082 Graph Table	Convergence method	mits 0.64 0.57
Step size 0.1 Tolerance 0.001 Stop Results Value adjusted successfully. Adjust value 40 Iteration 34 of 100 Current error -0.00067038754485082 Graph Table	Maximum iterations 100	Start Adjust
Tolerance 0.001 Stop Results Value adjusted successfully. Adjust value 40 Iteration 34 of 100 Current error -0.000670387544850822 Graph Table 45	Step size 0.1	
Results Value adjusted successfully. Adjust value 40 Iteration 34 of 100 Current error -0.00067038754485082 Graph Table	Tolerance 0.001	Stop
Value adjusted successfully. Adjust value 40 Iteration 34 of 100 Current error -0.00067038754485082 Graph Table 45 45 45 45 45 45 45 45 45 45	Results	
teration 34 of 100 Current error -0.00067038754485082	Value adjusted successfully. Adjust value	ue 40
Graph Table	Iteration 34 of 100 Current en	ror -0.00067038754485082
45 45 44 43 43 43 43 43 43 43 43 40 40 40 40 40 40 40 40 40 40	Graph Table	
0.80 0.75 (f) 0.70 (s) 0.70 (s	45 - Sel-point (%) - Controlled variable (%) - Manipulati	ed variable (m2)
43 43 43 43 42 42 41 0.75 (g) 0.75 (g) 0.70 end 0.75 (g) 0.70 log 0.70 log 0.75 log 0.70 log 0.70 log 0.75 log 0.70 log 0.75 log 0.70 log 0.75 log 0.70 log 0.70 log 0.75 log 0.70 log 0.75 log 0.70 log 0.75 log 0.75 log 0.70 log 0.75 log 0.75 log 0.70 log 0.75 log 0.70 log 0.75 log 0.70 log 0.75 log 0.70 log 0.75 log 0.70 log 0.75 log		0.80
L, end (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,		0.75 g
0.65 ≥ 0.60 0.60 0.55		
1 1 0.65 ≧ 0.60 0.60 0.55		10.70 m
		0.65 ≧
⁶⁰ 39 1 0.55	2 40	0.60
	39 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.55
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 Iteration	0 2 4 6 8 10 12 14 16 18 20 22 24 26 2 Iteration	8 30 32 34 36 38

Reator CSTR

Pode-se verificar no resultado um volume para o CSTR de aproximadamente 0.614 m³. Para fixar esse volume para o reator basta desativar o ajuste clicando com o botão direito do mouse sobre ele.

Calculation Parameters					
Reaction Set	CSTR e	CSTR e PFR			
Calculation Mode	Isothermi	c		\sim	
Outlet Temperature		353.15	К	\sim	
Reactor Volume		0.613801	m3	~	
Headspace		0	m3	\sim	
Reactor Pressure Drop		0	Pa	\sim	
Catalyst Amount		0	kg	\sim	
Results					
General Reactions	Conversions				
Compound		Conversion	(%)		
Ethanol			32.	0006	
Acetic acid			40.	8000	
Water			160	0.003	

Reator PFR

Para o mesmo problema, estime o volume e o comprimento de um reator tubular de fluxo pistonado (PFR) para 40% de conversão em ácido acético. Considere o diâmetro interno do reator de 0,25 m, a quantidade de catalisador desprezível e que na entrada do reator a pressão seja de 500 kPa (para evitar erros na simulação devido a perda de carga).

Para um diâmetro (*D*) de 0.25 m, a relação entre o comprimento (*L*) e o volume (*V*) do reator será:

$$L = \frac{4V}{\pi D^2} = \frac{4}{\pi * 0.25^2} V = 20,37V$$

Esse relação deve ser considerada sempre que possível na simulação.

Reator PFR

Clone uma das alimentações dos outros reatores, altere a pressão 500 kPa para arraste e configure PFR um no diagrama de fluxo. Sugere-se inicialmente um volume de 0.5 m³ e um comprimento de 10,185 m. resultado Como observa-se uma conversão maior

que 40% para o

ácido acético.

General Info								
Object	PFR-022	PFR-022						
Status	Calculated	d (23	/06/2020 15	:20:28)	v			
Linked to					_			
Connections								
Inlet Stream	F (5)			~ 🗲				
Outlet Stream	Lpfr			~ 🗲	1			
Energy Stream	Epfr		•	~ %				
Calculation Parameters								
Reaction Set	CSTR	e Pl	FR		\sim			
Calculation Mode	Isother	mic			\sim			
Outlet Temperature			353.15	K	\sim			
Reactor Volume			0.5	m3	\sim			
Reactor Length			10.185	m	\sim			
Catalyst Loading			0	kg/m	3 ~			
Catalyst Particle Diamete	r		0	mm	\sim			
Catalyst Void Fraction			0					
Results								
General Reactions Co	onversions	Co	ncentration F	rofile				
Compound			Conversion	(%)				
Ethanol				38	2013			
Acetic acid				47	7517			
Ethyl acetate			2	.07441	E+11			

Reator PFR

Faça uma análise de sensibilidade para obter uma boa estimativa inicial do volume do PFR para uma conversão de 40% do ácido acético (mantenha o comprimento em 10 m e considere o volume do reator entre 0.3 e 0.5m³).

	Independent variables Dependent variables Results Chart							
Clique em New:	Case Manager New SACase0 SACase1 Copy Save Delete	lame and Description Name SACase1 Description						
	Sensitivity Studies Independent Variables Dependent Variables Resu	lts Chart						
Var. Independente:	Independent Variable 1							
	Object PFR-022 Volume Volume	~						
	Lower Limit 0.3 Number of Points 20 🛓 Unit	m3						
	Upper Limit 0.5 Current Value	0.5						
	Sensitivity Studies Independent Variables Dependent Variables Results	Chart						
Var Donandanta	Variables							
val. Dependente.	Add/Remove Variables							
	Object Property	Unit						
	→ 1 PFR-022 → Acetic acid: Conversion	1						

Reator PFR

Resultados da análise de sensibilidade, volume do PFR entre 0.35 e 0.37.

Results				
PFR-022 - Volume (m3)	PFR-022 - Acetic acid: Conversion (%)			
0.352632	39.4162			
0.363158	40.1157			
0.373684	40.5573			
0.384211	41.2208			
0.394737	42.1082			
0.405263	42.7388			

Reator PFR

Colocando um volume de 0.36 e um comprimento de 7,3 m. Observa-se que foi obtida uma conversão de aproximadamente 40 % do ácido acético, tornando desnecessário tentar melhorar a precisão na busca por um valor mais próximo.

General Info							
Object	PF	PFR-022					
Status	Calculated (23/06/2020 15:31:43)						
Linked to							
Connections							
Inlet Stream		F (5) 🗸 🤌 🔊					
Outlet Stream		Lpfr 🗸 🍝 🌌					
Energy Stream		Epfr 🗸 🤞				-	
Calculation Parameters							
Reaction Set		CSTR e PFR 🗸 🗸					
Calculation Mode		Isothermic \checkmark					
Outlet Temperature		353.15			K	\sim	
Reactor Volume		0.36			m3	~	
Reactor Length		7.3 m			~		
Catalyst Loading		0			kg/n	n3 ~	
Catalyst Particle Diameter		0			mm	\sim	
Catalyst Void Fraction		0					
Results							
General Reactions C	Conve	ersions	Сс	oncentration F	rofile		
Compound			Conversion (%)				
Ethanol				31.9282			
Acetic acid				39.9103			