

Minicurso: Introdução ao DWSIM

Prof. Dr. Félix Monteiro Pereira

O DWSIM pode ser obtido na página do desenvolvedor:

http://dwsim.inforside.com.br/wiki/index.php?title=Downloads

Tutorial:

http://dwsim.inforside.com.br/wiki/index.php?title=Category:Tutorials

DWSIM	Page Discussion	Read View source Vie	ew history Go Search
	Main Page/pt		
	Languages:	English • Português • Deutsch? • Español?	٠
lavigation bout DWSIM eatures	O DWSIM é um simulador "código aberto" de rica, o DWSIM permite que estudantes e prot tipo de custo. Já que o DWSIM é aberto, eles	processos químicos, compatível com os padrões CAPE-OPEN, para Windows, Linux e Mac OS X. Desenvolvido para as plataformas. NET Framework e Mono e possuindo uma interface gráfica issionais de engenharia química entendam melhor o comportamento dos seus processos químicos através da utilização de modelos termodinâmicos rigorosos e de operações unitárias sem nenhum s podem ver como os cálculos são feitos através da inspeção do código fonte durante a execução do programa utilizando outras ferramentas disponibilizadas na internet.	
AQ	O DWSIM possui uma interface gráfica de fá		
ward APE-OPEN	 Recursos CAPE-OPEN: Soquete para P DWSIM expõe sua operação unitária de S 	acotes Termodinâmicos versão 1.0/1.1, Servidor de Propriedades Termodinâmicas versão 1.1, Soquete para Operações Unitárias e Objeto para Monitoramento de Fluxograma. Adicionalmente, o Script IronPython/IronRuby para todos os simuladores compatíveis com o padrão CAPE-OPEN.	
Standalone Thermo Library Excel Add-In Script Manager	 Modelos termodinâmicos: PC-SAFT, Pe COSMO-SAC, Chao-Seader, Grayson-St 	March 100 Image: Control 1	
	 Operações Unitárias: Misturador, Diviso Placa de Orifício, Colunas Rigorosas de A 	DWSIM no Windows 7 (.NET)	
ommand Line loadmap icensing	 Utilitários: Diagrama de Fases, Preditor Ferramentas: Regressão de Parâmetros 	(damente fan tan 199	
loonoing	 Análise Paramétrica: Otimização Multiva 	Territor J Territor State Stat	
ource Code	 Extras: Sistema de Automação por Scrip 	ts, Interface com Excel.	
roject Summary	Downloads		
ource Code	Clique em um dos botões abaixo para fazer o específicas por sistema podem ser encontrad	o download direto do pacote apropriado para o seu sistema ou para navegar pelo código fonte. Mais informações sobre as notas de versão, requisitos de sistema e instruções de instalação Las na página de downloads.	I de la constante de la consta
ategories	Clique aqui 🗗 para ver todos os arquivos disp	xoníveis do DWSIM.	i a separate a constanti de constanti
utorials iuides	DWSIM Full Installer (Win/.NET 2.0)	Instalador completo para Windows Inclui os binários, documentação, exemplos e instalador do ChemSep 6.96.	DWSIM no Ubuntu Linux (Mono)
termodynamics evelopment eneral usage	DWSIM Mono Edition Linux / Mono 2.6.7+	Pacote ZIP para Linux e OS X Esta é uma distribuição ZIP do DWSIM que pode ser executada no Linux e OS X através do <i>Mono 2.10 ou mais recente</i> ! Você também pode descompactar esse arquivo zip em um Pen-Drive e executar o DWSIM no modo portátil em sistemas Windows com .NET 4.0 instalado ou sistemas Linux / OS X com Mono 2.10 ou superior instalado.	
evelopment Blog orums	Git Repository (.NET/Mono)	Repositório do Código Fonte no GitHub O Código fonte do DWSIM em Visual Basic INET.	

Alterando o idioma (opcional):

Abra o DWSIM, feche a janela de boas vindas (Welcome to DWSIM);

Clique em Settings (Configurações), escolha General Settings e Other;

Feche e reabra o DWSIM.

WSIM - General Settings ⊠				
Solver Configuration Component Databases Interaction Parameters Backups Scripts Other				
Messages Image: Show tips Image: Check for updates on startup	•			
Debug mode				
UI Language				
Language English (United States) Português (Brasileiro) English (United States) Portuguesch				
Español				

Para iniciar a utilização do DWSIM vamos considerar a destilação flash 100 mol/s de uma mistura equimolar de etanol-água entrando em um aquecedor a 298K e 101325Pa, saindo do aquecedor e entrando no separador (flash) a 353 K e 101325 Pa.

Passos para implementação no simulador:

2) No assistente de configuração da simulação clique em próximo, digite o nome do primeiro componente (etanol) em procurar e adicione o componente, depois repita o procedimento para o segundo componente (água).

Componentes

- ✓ Introdução
- Componentes
- Pacote de Propriedades
- Algoritmo Flash
- Sistema de Unidades

Selecione os componentes que deseja adicionar à simulação. Utilize a caixa de texto para procurar e selecionar um componente na lista. Clique em "Próximo" para continuar.

Próximo >	Cancelar
-----------	----------

3) Após verificar se todos os componentes foram adicionados clique em próximo.

Procurar água						
Nome	No. CAS	Fórmula	Origem	CP F	P Adicionar > < Remover Limpar Lista 	Adicionados Etanol (C2H5OH) Água (H2O)

Após adicionar todos os componentes clique em próximo Cancelar

4) Adicione um pacote de propriedades adequado ao problema (por exemplo UNIQUAC) e clique em próximo.

Pacote de Propriedades

- ✓ Introdução
- Componentes
- Pacote de Proprieda...
- Algoritmo Flash
- Sistema de Unidades

Selecione e adicione os Pacotes de Propriedades que deseja utilizar na simulação. O primeiro da lista será selecionado por padrão por todos os objetos do fluxograma.

Você poderá configurar os Pacotes de Propriedades na janela de configuração da simulação após finalizar este assistente.

Clique em "Próximo" para continuar.

Pacotes Disponíveis	Pacotes Ad	Pacotes Adicionados		
PC-SAFT	 Nome 	Tipo		
Peng-Robinson (PR) Peng-Robinson-Stryjek-Vera 2 (PRSV2-M) Peng-Robinson-Stryjek-Vera 2 (PRSV2-VL) Soave-Redlich-Kwong (SRK) Peng-Robinson / Lee-Kesler (PR/LK) UNIFAC UNIFAC UNIFAC-LL Modified UNIFAC (Dortmund)	PP_1	UNIQUAC		
Chao-Seader				
Gravsor Neste Pacote de Propriedades, o coeficiente de ativ calculado através do modelo UNIQUAC. A fugacid calculada através da EDE Peng-Robinson. As ental	quida é or é : fases			
Clique aq termodinâmicas são calculadas pela equação Lee-Kesler. Outras pro	lar as propriedades dos fluidos.			

Próximo > Cancelar

5) Selecione um algoritmo adequado ao problema (por exemplo, loops aninhados equilíbrio líquido-vapor) e clique em |Próximo|.

Algoritmo Flash

- Introdução
- Componentes
- Pacote de Propriedades
- Algoritmo Flash
- Sistema de Unidades

Selecione um Algoritmo Flash adequado para a sua simulação. Se seu sistema pode apresentar instabilidades na fase líquida (sistemas imiscíveis), selecione um algoritmo capaz de prever o equilíbrio entre três fases (ELLV). Para calcular equilíbrio incluindo uma fase sólida, selecione o algoritmo correspondente. Para sistemas complexos, utilize o algoritmo de minimização de Gibbs mais adequado (duas ou três fases).

Clique em "Próximo" para continuar.

Algoritmo Flash	Loops Aninhados (Equilíbrio Líquido-Vapor)
-	Loops Aninhados (Equilíbrio Líquido-Líquido-Vapor)
	Inside-Out (Equilíbrio Líquido-Vapor)
	Inside-Out (Equilíbrio Líquido-Líquido-Vapor)
	Minimização da Energia Livre de Gibbs (Equilíbrio Líquido-Vapor)
	Minimização da Energia Livre de Gibbs (Equilíbrio Líquido-Líquido-Vapor)
	Loops Aninhados (Equilíbrio Sólido-Líquido - Sistemas Eutéticos)
	Loops Aninhados (Equilíbrio Sólido-Líquido - Solução Sólida)
	Loops Aninhados (Equilíbrio Líquido-Líquido-Vapor, Fases Líquidas Completamente Imiscíveis)

Clique aqui para saber mais detalhes e os limites de aplicabilidade de cada algoritmo.

6) Selecione o sistema de unidades (por exemplo, SI) e clique em |finalizar|.

Sistema de Unidades

- Introdução
- Componentes
- Pacote de Propriedades
- Algoritmo Flash
- Sistema de Unidades

Selecione o Sistema de Unidades desejado para a sua simulação. Você poderá alterar as unidades de sistemas existentes, incluir novos sistemas e realizar outras operações na janela de configuração da simulação a qualquer momento após finalizar este assistente.

Clique em "Finalizar" para sair e iniciar a simulação.

Sistema de Unidades Si	stema SI	•		
Propriedade	Unidade	Propriedade	Unidade	
Temperatura	К	Pressão	Pa	
Vazão mássica	kg/s	Vazão molar	mol/s	
Vazão volumétrica	m3/s	Entalpia Específica	kJ/kg	
Entropia Específica	kJ/[kg.K]	Massa molar	kg/kmol	E
Massa específica	kg/m3	Tensão superficial	N/m	
Capacidade Calorífica	kJ/[kg.K]	Condutividade térmica	W/[m.K]	
Viscosidade Cinemática	m2/s	Viscosidade dinâmica	Pa.s	
Delta-T	К	Delta-P	Pa	
Comprimento/Head	m	Fluxo de Energia	kW	
Tempo	s	Volume	m3	
Volume Molar	m3/kmol	Área	m2	
Diâmetro/Espessura	mm	Força	N	-

7) Para verificar o pacote termodinâmico faça um gráfico de equilíbrio líquido-vapor clicando em |Utilitários| e em seguida em |Calcular|.

DWSIM - Utilitários: Diagrama de Fases (Binário) 🛛 🛛 🗖							
i 🖨 🔒 📓 🗟 🛍							
Seleção de Objeto e Conf	gurações	Resultados					
Componente 1	Etanol (C2H5OH)	Gráfico Dados Exp Tabela					
Componente 2	Água (H2O)	Etanol (C2H5OH) / Água (H2O) P = 101325 Pa					
Tipo de diagrama	⊙ T-x-y ○ P-x-y ○ (T) x-y ○ (P) x-y	380					
Opções do diagrama T-x-y	🗹 ELV 🗖 ELL	375					
	🔲 ESL 🐵 Eutético 🔿 Solução Sólida	370					
	Pontos Críticos						
Base do Eixo X	Fração Molar 💌	365					
Pressão	101325,0 Pa						
Temperatura	298,15 K						
Pacote de Propriedades	PP_1 (UNIQUAC)	355					
Comparar Modelos	Calcular	350					
		345					
		Fração Molar / Etanol (C2H5OH) [UNIQUAC] Pontos de Bolha UNIQUAC] Pontos de Orvalho					

8) Feche o gráfico, arraste um aquecedor para o fluxograma e configure como na figura. (Obs. É importante que cada processo convirja individualmente antes de adicionar um novo processo

9) Com um duplo clique em alimentação selecione a composição da mistura clique em confirmar alterações e em seguida em fechar.

Alimentação - Editar Composição							
Identificação							
Nome/Tag Alimentação	0						
Base							
• Fração Molar O	Fração Mássica 🛛 🔿 Vazão Molar	🔿 Vazão Mássica 🔿 Fração	Volumétrica no Estado Líquido				
O Molaridade, ou O	Molalidade - Solvente: Etanol (C2H	150H) 🔽					
Composição			Tarefas				
	Composição no Equilíbrio	Composição Inicial (Frações Molares)	Normalizar				
Etanol (C2H5OH)	0,5000	0,5000	Equalizar				
Água (H2O)	0,5000	0,5000	Zerar				
			Gerenciar				
	Confirmar Alterações						
			Fechar				
			Total: 1,0000				
			Status: OK				

10) Com um clique em alimentação no fluxograma, altere a temperatura para 353 K e o fluxo molar para 100 mol/s.

1	Objeto	Alimentação				
•	Тіро	Corrente de Matéria				
1	Status	Calculado				
	Proprie	edades Aparência	=			
	2 ↓ [
	1. Cond	ições				
	[1] Espe	cificação	Temperature_and_Pressure			
	[2] Temp	eratura (K)	298,15			
	[3] Press	;ão (Pa)	101325	\rightarrow		
	[4] Vazão	o mássica (kg/s)	3,2042	Alimentação	FO FO	
	[5] Vazã	o molar (mol/s)	100 💌	Annientação	HEAHUUU	
	[6] Vazão	o volumétrica (m3/s)	0,00371		\rightarrow	
	[7] Fraçã	ăo Molar (Fase Vapor)	0		EO	
	[8] Ental	pia Específica (kJ/kg)	-1356,67401			
	[9] Entro	pia Específica (kJ/[kg.K])	-4,55031			
	[A] Edito	r de composições	(Coleção)			
	[B] Base	da composição	Molar_Fractions			

11) Arraste um Vaso Separador G-L para o fluxograma e selecione FO para a Corrente de Entrada (1), digite VO para a saída de vapor e LO para a saída de líquido.

Objeto selecionado	~ ₽ ×	Correntes de Matéria	Planilha	Fluxograma
Objeto SEP-000				
Tipo Vaso Separador G-L				
Status Calculado				
Propriedades Aparência	-			
<u>₽</u> 2↓ 🗉 🔚				
🗆 1. Conexões				
Corrente de entrada (1)	FO			
Corrente de entrada (2)			^	
Corrente de entrada (3)		\Rightarrow	A	
Corrente de entrada (4)		Alimentação	HEATOOO	F0
Corrente de entrada (5)				
Corrente de entrada (6)				LO
Saida de vapor	VO		EO	
Saida de líquido	LO			
Saida de líquido (2)				
Corrente de Energia				
🗆 2. Parâmetros				
Pressão a jusante	Minimum			
Especificação do cálculo Flash	PH			
Modo de Operação do Vaso	TwoPhase			
Sobrepor Temperatura de separação	False			
Sobrepor Pressão de separação	False			

12) Verifique os resultados obtidos para as correntes de vapor e de líquido, selecionando cada objeto ou clicando na aba Correntes de Matéria ou ainda criando uma Tabela Mestra com os principais resultados.

Operação de Ajuste

Considere a destilação flash 1000 mol/s de uma mistura equimolar de etanol água entrando no separador a 101325 Pa. Deseja-se calcular o valor de temperatura para o qual a fração molar de etanol na corrente de vapor seja igual a 0,60. Para casos desse tipo deve-se utilizar a função ajuste, a fim de evitar o tedioso processo de tentativa e erro utilizado para testar o valor da temperatura que faça com que a fase vapor a 101325 Pa saia com uma fração molar de etanol de 0,60.

A fim de simplificar, vamos partir da última simulação realizada.

1) Abra a última simulação realizada e clique em recalcular tudo.

Operação de Ajuste

2) Arraste a função de ajuste para o fluxograma e configure conforme apresentado na aba Propriedades da figura.

Objeto selecionado 🔹 🖣 🗙	Correntes de Matéria Planilha	Fluxograma
Objeto ADJ-000		
Tipo Ajuste		
Status -		
		ADJ-000
4 1. Configurações		
 Variável Controlada () 		•
Variável Controla Clique para selecionar		
Tipo do Objeto Corrente de Matéria	Alimentação una Fo	V0
Objeto V0	HEAT-000	
Propriedade Fração Molar (Mistura) - El		SEP-000
 Variável Manipulada () 	EO	
Variável Manipula Clique para selecionar	Tabela Mestra - Corrente de Matéria	
Tipo do Objeto Aquecedor	Objeto	V0 L0 F0
Objeto HEAT-000	Temperatura	353,00002 353,00002 353,0 K
Propriedade Temperatura da Saída	Pressão Vezão Molor	101325,0 101325,0 101325,0 Pa
Valor mínimo (or 0	Fração Molar (Mistura) - Etanol (C2H5OH)	0.60797 0.27306 0.5
Valor máximo (o 0	Fração Molar (Mistura) - Água (H2O)	0,39203 0,72694 0,5
Usa Objeto como R False		
4 2. Parâmetros		
Valor de Ajuste (ou 0,6		
Número Máximo de 10		
Tolerância 0,0001		
Delta (Step size) 0,0001		
Ajuste Simultâneo False		
Painel de Controle		

Operação de Ajuste

3) Abra o painel de controle do ajuste e clique em |Iniciar Ajuste|. Caso o ajuste não convirja, clique em |iniciar Ajuste| novamente...

ADJ-000 - Painel de Controle		
Ações		
Método de convergência	Secante O Brent	Iniciar Ajuste Parar
Parâmetros e Resultados		
Valor de ajuste	0,6	Resultados
Tolerância	0.0001	Valor ajustado com sucesso.
Número máximo de iterações	10	Iteração 4 de 10
Delta inicial (Step size)	0.0001	Erro atual -1,93395601181257E-05
Gráfico Tabela		
0.614	Set-point ()	Variável Controlada ()
C 0,614		
10,012	$\langle \rangle$	1
	$\langle \rangle$	
S 0,600		
0 1	2	3 4 5
		Iteração

Operação de Ajuste

Tabela Mestra - Corrente de Matéria						
Objeto	V0	LO	F0			
Temperatura	353,29094	353,29094	353,29092	к		
Pressão	101325,0	101325,0	101325,0	Pa		
Vazão Molar	70,98329	29,01666	100,0	mol/s		
Fração Molar (Mistura) - Etanol (C2H5OH)	0,59998	0,25535	0,5			
Fração Molar (Mistura) - Água (H2O)	0,40002	0,74465	0,5			

Operação de Reciclo

Considere que, na destilação flash de 1000 mol/s de uma mistura equimolar de etanol água entrando no separador a 101325 Pa. Deseja-se aumentar o fluxo de vapor com fração molar de etanol de 0,60 (do exemplo anterior) utilizando um segundo tambor de flash na saída de líquido, a fim de recuperar o etanol contido nessa fase. Existem várias formas de se realizar esse procedimento, sendo uma delas apresentada a seguir.

1) Abra a última simulação realizada e peça para recalcular tudo.

Operação de Reciclo

2) Adicione um aquecedor e configure como na figura (Obs. Regule a temperatura de saída de forma que, no vapor, a fração molar de etanol igual a 0,5 –diagrama temperatura versus composição binário).

Objeto selecionado	→ ‡ ×		Correntes de Matéria	Planilha Fluxo	grama					
Objeto HEAT-001		Í T								
Tipo Aquecedor										
Statue Calculado										
Status Calculado										
Propriedades Aparência					0					
2↓ 🖾 🚍					ADJ-000					
🗆 1. Conexões										
Corrente de entrada	LO									
Corrente de saída	LOaq				C		_ <u>`</u>			
Corrente de Energia	E1		\Rightarrow	\rightarrow		F				
2. Parâmetros de cálculo			Alimentação	HEATOOO FO		h	VU			
Queda de pressão (Pa)	0,0			HEARDOOD					\wedge	
Modo de Cálculo	OutletTemperature			~	SEP	-000				
Temperatura de Saída (K)	357,0			EO			LO		HEAT 001	LOaq
Eficiência (0-100)	100									-
🖂 3. Resultados									F1	
Calor Fornecido (kW)	362,41453									
Delta-T (K)	3,70906		Tabela Mestra - Cor	rrente de Matéria						
🖂 4. Miscelânea			Objeto		VO	LO	FO			
Ativo	True		Temperatura		353,29094	353,29094	353,29092	к		
🗆 Outros			Pressão		101325,0	101325,0	101325,0	Pa		
Anotações			Vazão Molar		70,98329	29,01666	100,0	mol/s		
ID	AQ-dc96afc3-cad0-4d91-bfb5-9ac346dc1bca		Fração Molar (Mistu	ura) - Etanol (C2H5OH)	0,59998	0,25535	0,5			
Último cálculo bem-sucedido em	2015-06-08T23:38:27.2506043-03:00		Fração Molar (Mistu	ira) - Agua (H2O)	0,40002	0,74465	0,5]	
Pacote de Propriedades										
Pacote de Propriedades	PP_1									

Operação de Reciclo

3) Adicione um segundo separador e configure como na figura.

Operação de Reciclo

4) Adicione outro ajuste ajustando como variável controlada a saída de vapor (V1) uma fração molar de etanol igual a 0,5 e como variável manipulada a temperatura de saída do trocador de calor.

Objeto selecionado 🛛 👻 🕂 🗙	Correntes de Matéria Planilha Fluxo	ograma			
Objeto ADJ-001					
Tipo Ajuste					
Status Não-Calculado					
Propriedades Aparência					
		ADJ-000			
🗆 1. Configurações					(A)
Variável Controlada ()					ADJ-001
Variável Manipulada ()					
Usa Objeto como Referência? False			~		
🗆 2. Parâmetros	Alimentação un des FO		VO		
Valor de Ajuste (ou Offset) () 0,5	Armentação HEATIOOO		_		
Número Máximo de Iterações 10	$ \rightarrow $	SEP-000			
Tolerância 0,0001	EO		LO	HEAT 001 LOaq	SEP-001
Delta (Step size) 0,0001				<u>_</u>	L1
Ajuste Simultâneo False				~	
Painel de Controle				=1	
🗉 Outros	Tabela Mestra - Corrente de Matéria				1
Anotações	Objeto	V1 V0	L1	LO FO	-
	Temperatura	357,00041 353,29094	357,00041 353,290	94 353,29092 K	7
	Pressão	101325,0 101325,0	101325,0 101325	5,0 101325,0 Pa	7
	Vazão Molar	9,98242 70,98329	19,03424 29,016	66 100,0 mol/s	
	Fração Molar (Mistura) - Etanol (C2H5OH)) 0,50436 0,59998	0,1247 0,255	35 0,5	
	Fração Molar (Mistura) - Água (H2O)	0,49564 0,40002	0,8753 0,744	65 0,5	

Operação de Reciclo

5) Ajuste utilizando o painel de controle.

	4	DJ-001 - Painel de Controle
	[- Ações
		Método de convergência 💿 Secante 🔿 Brent 🛛 Iniciar Ajuste 🛛 Parar
Alimentação HEAT.000 F0		Parâmetros e Resultados Valor de ajuste 0,5
EO	SEP-I	Tolerância 0,0001 Valor ajustado com sucesso.
		Número máximo de iterações 10 Erro atual 1,06172370228919E-06
		Delta inicial (Step size) 0,0001
Tabela Mestra - Corrente de Matéria		Gráfico Tabela
Objeto	V1	
Temperatura	357,1693 3	
Pressão	101325,0	
Vazão Molar	10,27117	¥ 0,504 [↓]
Fração Molar (Mistura) - Etanol (C2H5OH)	0,5	
Fração Molar (Mistura) - Água (H2O)	0,5	
		Ê 0,502
		tteração

Operação de Reciclo

6) Antes de colocar a função Reciclo você deve adicionar um misturador, o primeiro passo é desconectar o fluxo de entrada do primeiro aquecedor, basta clicar com o botão direito do mouse sobre o fluxo de alimentação e selecionar desconectar de...

Operação de Reciclo

7) Adicione um misturador com a configuração da figura.

Objeto selecionado	→ ‡ ×	Correntes de Matéria Planilh.
Objeto MIX-000		
Tipo Misturador		
Status Calculado		
Propriedades Aparência	~	
🗆 1. Conexões		
Corrente de entrada (1)		
Corrente de entrada (2)	Alimentação	
Corrente de entrada (3)		
Corrente de entrada (4)		
Corrente de entrada (5)		
Corrente de entrada (6)		
Conectado a (saída)	mistura	
🗆 2. Parâmetros		
Pressão a jusante	Minimum	
🗆 4. Miscelânea		
Ativo	True	
🗆 Outros		МІХ-000
Anotações		
ID	MIST-0072581b-3d06-4290-b5b4-8c2553c58854	mistura HEAT 000
Último cálculo bem-sucedido em	2015-06-09T00:07:58.5881156-03:00	
🖻 Pacote de Propriedades		EO
Pacote de Propriedades	PP_1	mentação

Operação de Reciclo

8) Adicione a saída do misturador (M0) à entrada do primeiro aquecedor.

Operação de Reciclo

9) Adicione um reciclo com as configurações da Figura (Obs. Use o botão direito do mouse para inverter a figura do reciclo). Clique com o botão direito do mouse sobre o reciclo e selecione recalcular.

Objeto selecionado	→ ‡ ×	Corrent	es de Matéria	Planilha	Fluxograma							
Objeto REC-000												
Tipo Reciclo												
Status Calculado												
Propriedades Aparência	₹											
🔡 🛃 🖾 🔚								R				
🗆 1. Conexões								PEC ANA				
Corrente de entrada	V1							REGIOUD				
Corrente de saída	R											
🗆 2. Configurações												
Método de aceleração	Wegstein											
 Parâmetros (Wegstein) 	()						A					
Tipo de Flash	None						0					
Número Máximo de Iterações	10					AD)J-000					_
3. Parâmetros de convergência	a (tolerâncias))								
Temperatura (K)	0,1			Ť							0	
Pressão (Pa)	0,1		R								ADJ-001	-
Vazão mássica (kg/s)	0,01							\rightarrow				
🗆 4. Resultados				MIX-00	∘└▃─╱∕▲	$\rightarrow \rightarrow$		NO.				
Iterações necessárias	1					F0		V0		_		
Erro na temperatura (K)	0					000						244
Erro na pressão (Pa)	0						SEP-000		A			V1
Erro na vazão mássica (kg/s)	0		Alim	ortoon	EO			LO	HEAT 001	LOaq	SEP.001	$\rightarrow \square$
🗆 Outros			Ann	ientaya0							52, 501	L1
Anotações												
									E1			

Operação de Reciclo

10) Adicione a corrente de reciclado à segunda entrada do misturador e peça para recalcular tudo. Compare com os resultados obtidos para o problema sem reciclo.

Coluna de destilação – projeto (coluna shortcut)

A simulação utilizando a coluna shortcut é útil para obter uma primeira aproximação do comportamento durante o projeto de uma coluna de destilação, tendo em vista que não leva em consideração todos os parâmetros envolvidos nas diferentes colunas de destilação existentes nos processos industriais. Nessa primeira aproximação, é possível obter a primeiras informações sobre, por exemplo, o número de pratos que a coluna deverá ter, ou qual a razão de refluxo mínima que poderá ser imposta.

A seguir está apresentado um exemplo de implementação de uma simulação de uma coluna de destilação (coluna short-cut) no DWSIM.

Coluna de destilação – projeto (coluna shortcut)

Pretende-se utilizar uma coluna de destilação, para separar uma mistura de cinco alcanos ($C_2 a C_6$). No processo de separação, o propano (C_3H_8) e o n-butano (C_4H_{10}) são os "compostos chave" ("leve"e "pesado", respectivamente). A alimentação entra na coluna com uma vazão molar de 126 mol/s à pressão de 1,72 MPa e 380 K. Pretendese obter no destilado no máximo 2% em mol de n-butano (C_4H_{10}) e na corrente de fundo (resíduo), 2% em mol de propano (C_3H_8). Considere uma razão de refluxo igual a 6, condensador tipo "Totalcond", uma pressão no condensador de 1,71 Mpa e no refervedor de 1,74 MPa. Simule:

a) O Refluxo mínimo; b) O número mínimo de estágios; c) o número de estágios para as condições operacionais do problema; d) A carga térmica no condensador e no refervedor; e) A vazão molar do fluxo de topo e de fundo; f) as frações molares de cada componente nos fluxos de topo e de fundo.

Coluna de destilação – projeto (coluna shortcut)

Representação do problema:

P_B = 1,74 MPa

Implementação:

- Adicione todas as espécies químicas envolvidas no sistema em uma nova simulação no DWSIM. Escolha o pacote de fluidos de Soave-Redlich-Kwong) e o sistema inglês de unidades.
- 2) Adicione uma Coluna Shortcut com as configurações da figura. No fluxo F adicione os fluxos molares dos componentes, a temperatura e a pressão. Analise os resultados.

⊿	1. Conexões			
	Alimentação	F		
	Produto de Topo	D	F	
	Produto de Fundo	В		
	Carga Térmica do Condensador	Ec		Ec
	Carga Térmica do Refervedor	Er		
⊿	2. Parâmetros		- L	D
	Tipo do Condensador	TotalCond		
	Razão de Refluxo	6		
	Comp. Chave Leve	Propano (C3)		
	Fração Molar do Comp. Chave Pesado n	0,02		
	Comp. Chave Pesado	n-Butano (nC4)		Er
	Fração Molar do Comp. Chave Leve no F	0,02		SC-000
	Pressão do Condensador (Pa)	1710000,0		В
	Pressão do Refervedor (Pa)	1740000,0		

Influência dos parâmetros do processo: Pode-se simular o comportamento da coluna alterando os valores dos parâmetros de entrada, como temperatura da alimentação, pressão no condensador e no refervedor, fração molar na alimentação, diferentes especificações de saída de produtos, entre outros parâmetros de entrada. A seguir serão apresentadas, a título de exemplo a influência da temperatura de alimentação e da razão de refluxo sobre o comportamento da coluna de destilação já utilizada.

Influência da temperatura de alimentação: Para demonstrar a influência da temperatura de alimentação, adicione um trocador de calor na entrada para considerar a energia gasta no caso da necessidade de aquecimento da mistura.

Objeto F					—
Tipo Correr	nte de Matéria				Ec Ec
Status Calcula	ado				
Propriedades	s Aparência				D
🗊 🌢 I 🖾 🔚	<u>`</u>		$\Rightarrow \rightarrow \checkmark$		
▲ 1. Condições	5		F HEAT	-000 Fq	F.
[1] Especificaç	ão	Temperature_and_Pressure	\rightarrow		
[2] Temperatu	ra (K)	300	ESTR-002		
[3] Pressão (Pa	a)	1720000		T	
[4] Vazão más	sica (kg/s)	7,65877		so	-000
[5] Vazão mola	ar (mol/s)	126			в
[6] Vazão volu	métrica (m3/s)	0,01318	Ob	jeto HEAT-000	
[7] Fração Mol	ar (Fase Vapor)	0	Tio	o Aquecedor	
[8] Entalpia Es	pecífica (kJ/kg)	-366,35188		ture Colordada	
[9] Entropia Es	specífica (kJ/[kg.K])	-1,12552	516	RUS Calculado	
[A] Editor de o	omposições	(Coleção)		Propriedades Aparênci	ia
[B] Base da co	mposição	Molar_Fractions	a	41 📼 🖴	
4 2. Composição	ões molares		<u>/=_</u>)		
⊿ [1] Mistura		()	4	1. Conexoes	_
n-Hexano	(nC6)	0,05	•	Corrente de entrada	F
Etano (C2)	0,0301587	•	Corrente de saida	Fq
Propano (C3)	0,2		Corrente de Energia	ESTR-002
n-Butano	(nC4)	0,3698413	4	2. Parâmetros de cálculo	
n-Pentano	o (nC5)	0,35		Queda de pressão (Pa)	0,0
Tel Constantin Arr	· · · ·	1.5	1	Modo de Cálculo	OutletTemperature
			-	Temperatura de Saída (K)	300.0

Eficiência (0-100)

100

Influência da temperatura de alimentação: Considerando uma mistura entrando a 300 K (taxa de refluxo igual a 6) no trocador de calor simule, para a temperatura no estágio de alimentação (saída do trocador de calor) variando entre 330K e 390K, os seguintes parâmetros: a) refluxo mínimo; b) número mínimo de estágios; c) estágio ótimo de alimentação; d) cargas térmicas do condensador, do refervedor, do trocador de calor da alimentação e total.

a) Temperatura de alimentação versus refluxo mínimo. No dwsim clique em |Otimização| e selecione |Análise de Sensibiliadade|.

Análise de Sensibilidade	
Gerenciador de Casos Variável Independente	e Função Dependente Resultados Gráfico
Gerenciador de Casos Novo Copiar Salvar Excluir	Nome e Descrição Nome T x refluxo minimo Descrição
erenciador de Casos Variável Independente Função Dependente Re: Variável Independente 1	Gerenciador de Casos Variável Independente Função Dependente Resultados Grá Variável Adicionar/Bemover Variáveis
Ubjeto HEAT-UUU Propriedade Temperatura da Saída	0 0
Limite Inferior 330 Número de Pontos 110 📑 Unidade	Objeto Propriedade Unidade
Limite Superior 390	▶ 1 SC-000 💌 Razão Mínima de Refluxo

Gerenciador o — Variável Ind

a) Temperatura de alimentação versus refluxo mínimo.

b -c) Temperatura de alimentação versus estágios.

Ge	ren	cia	dor de Casos	Variável	Independente	Função Dependente	e Result
•	 Variável 						
	Adicionar/Remover Variáveis						
6	۲	0					
			Obje	to		Propriedade	
D	>	1	SC-000	-	Estágio Ótimo (de Alimentação	-
		2	SC-000	•	Número Mínim	o de Estágios	-

- Resultados							
HEAT-000 - Temperatura da Saída (K)	SC-000 - Estágio Ótimo de Alimentação ()	SC-000 - Número Mínimo de Estágios ()					
330,0	3,44117	8,07275					
336,66667	3,53909	8,2689					
343,33333	3,65901	8,50658					
350,0	3,79678	8,77624					
356,66667	3,95198	9,07577					
363,33333	4,12624	9,40673					
370,0	4,32298	9,77371					
376,66667	4,66139	10,17469					
383,33333	5,12093	10,57883					
390,0	5,74559	10,98144					

2° SEMINÁRIO DE RECURSOS NATURAIS, sustentabilidade e tecnologias ambientais

d) Temperatura de alimentação versus energia.

HEAT-000 - Temperatura da Saída (K)	HEAT-000 - Calor Adicionado (kW)	SC-000 - Calor Trocado no Condensador (kW)	SC-000 - Calor Trocado no Refervedor (kW)	Total (em módulo)
330	582,57641	4064,9171	5324,1492	10301,64271
336,66667	719,73599	4064,91503	5186,9878	10308,30549
343,33333	860,15327	4064,91282	5046,56852	10314,96794
350	1004,14363	4064,91039	4902,57594	10321,62996
356,66667	1152,11755	4064,90769	4754,59952	10328,29143
363,33333	1304,62651	4064,90465	4602,08774	10334,95223
370	1462,44188	4064,90122	4444,26916	10341,61226
376,66667	1902,77858	4064,87522	4003,90659	10348,22706
383,33333	2461,01733	4064,84324	3445,63576	10354,82966
390	3096,1697	4064,81316	2810,4527	10361,43556

Análise de Sensibilidade

Gerenciad	or de Casos Variáve	Independente	Função Dependente	Resu	tados	Gráfico
💿 Variáv	vel					
Adiciona	ar/Remover Variáveis					
0 0						
	Objeto		Propriedade		Unida	ade
1	HEAT-000 📃	Calor Adiciona	do	-	kW	
2	SC-000 💌	Calor Trocado	no Condensador	-	kW	
▶ 3	SC-000 💌	Calor Trocado	no Refervedor	-	kW	

Análise da Influência da temperatura de alimentação (ponto a ponto no excel):

----Refluxo mínimo

---Número Mínimo de Estágios

-----Estágio ótimo de Alimentação

360

Temperatura de alimentação da coluna (K)

380

400

– Número de estágios

340

Características

320

Influência da razão de refluxo: Considerando na entrada uma temperatura de 345 K, vamos alterar a taxa de refluxo entre 2,2 e 10, a fim de avaliar a variação das seguintes respostas: a) Número de estágios, b) Estágio ótimo de alimentação; c) Carga térmica no condensador (Ec), no refervedor (Er) e total (Ec+Er).

Resultados para razão de refluxo igual a 4 e temperatura na alimentação de 345K: A otimização do destilador é um processo que pode envolver um planejamento de experimentos no qual todos os parâmetros variem, porém, vamos considerar as condições citadas como uma estimativa inicial para uma coluna de destilação de 14 estágios (12 pratos + refervedor + condensador).

Tabela Mestra - Corrente de Matéria				
Objeto	F	D	B	
Temperatura	300,0	310,76121	399,23294	к
Pressão	1720000,0	1710000,0	1740000,0	Pa
Vazão Molar	126,0	27,58385	98,41397	mol/s
Fração Molar (Mistura) - Etano (C2)	0,03016	0,13773	0,0	
Fração Molar (Mistura) - Propano (C3)	0,2	0,84216	0,02	
Fração Molar (Mistura) - n-Butano (nC4)	0,36984	0,02	0,4679	
Fração Molar (Mistura) - n-Pentano (nC5)	0,35	0,00003	0,4481	
Fração Molar (Mistura) - n-Hexano (nC6)	0,05	0,0	0,06402	

Tabela Mestra - Coluna Shorto	.t	
Objeto	SC-000	
Razão de Refluxo	4,0	
Pressão do Condensador	1710000,0	Ра
Pressão do Refervedor	1740000,0	Ра
Razão Mínima de Refluxo	2,18361	
Número Mínimo de Estágios	8,57116	
Estágio Ótimo de Alimentação	4,872	
Calor Trocado no Condensador	1847,68738	кŵ
Calor Trocado no Refervedor	2793,69465	КŴ

Tabela Mestra - Corrente de Energia					
Objeto	Er	Ec	ESTR002		
Potência	2793,69465	1847,68738	895,80175	кw	

Reator CSTR

Para exemplificar a simulação utilizando reatores CSTR, consideremos uma das reações de esterificação utilizadas para a obtenção de biodiesel, a esterificação do ácido oleico (presente no trioleato de glicerol - OOO), utilizando etanol (Et) em meio contendo hidróxido de sódio para a formação do oleato de etila (EtO). Considere a seguinte reação reversível:

```
3 Et + 000 \leftarrow \rightarrow glicerol + 3 EtO
```

A cinética de reação de ordem direta (r) e reversa (r') obedecem às seguintes equações:

```
r=k*[Et]*[000]
```

```
r'=k'*[glicerol]
```

Sendo:

```
r=1,9647*10<sup>-5</sup>*exp[-34,208509/(RT)] (mol/m<sup>3</sup>s)
```

```
r'=2,372*10<sup>-7</sup>*exp[-6,613448/(RT)] (mol/m<sup>3</sup>s)
```


Reator CSTR

Considere a composição molar da alimentação a 316,7 K e 1013125 Pa (considerando o pacote de componentes Biodiesel do DWSIM):

Water_BD=0,001; Ethanol_BD=0,829; NaOH_BD=0,031; Glycerol_BD=0,001; OOO=0,137; EtO=0,001.

Obs. A utilização de quantidades insignificantes dos produtos de reação na alimentação (valores iguais a 0,001, nesse exercício) é necessária para a convergência da simulação no DWSIM.

 a) Simule a composição de saída de um CSTR de 1m³ para um fluxo de alimentação de 2 mol/s, considere o reator isotérmico com temperatura de 316,7 K.

2° SEMINÁRIO DE RECURSOS NATURAIS,

sustentabilidade e tecnologias ambientais

Reator CSTR

a) Abra o DWSIM, adicione os componentes (Water_BD, Ethanol_BD, NaOH_BD, Glycerol_BD, OOO e EtO) . Escolha o pacote de propriedades NRTL e o algoritmo flash Loops aninhados ELV.

Clique em Ferramentas e abra o Gereciador de Reações e configure a reação cinética como na figura.

dentificação							
Nome							
Descrição							
Componentes, Estequiometria e Ordens de	Reação						
Nome	Massa Molar	Incluir	CB	Coef. Esteq.	OD	OR	4
Water_BD	18,0151			0	0	0	
Ethanol_BD	46,0699	V		-3	1	0	
NaOH_BD	39,997			0	0	0	
000	885,44501	885,44501 🔽 🔽 -1		-1	1	0	
âlycerol_BD	92,095	V		1	0	1],
quação 3Ethanol_BD + 000 <> Glyce Parâmetros da Reação Cinética	rol_BD + 3EtO	100 400 110	, nanoi_00)	-23010,0			
ase Concentração Molar 🔻 Fas	e Líquida		▼ Tmin (ł		(K)	330	
Componente-Base 000							
Constantes de Velocidade das Reações	Direta e Inversa (k e k)					
Reação Direta [k = A exp(-E/RT)]	A 1,9647E-05	E 3	4,208509	T em K			
Reação Reversa [k' = A' exp(-E'/RT)]	A' 2,372E-07	E' 6	613448	T em K			

Reator CSTR

a) Crie uma corrente de matéria para a alimentação (F) e configure.

Water_BD=0,001; Ethanol_BD=0,829; NaOH_BD=0,031; Glycerol_BD=0,001; OOO=0,137; EtO=0,001; T=317,6 K; P=1013125 Pa; F= 2 mol/s.

Adicione o reator CSTR e configure como na Figura. Execute a simulação clicando com o botão direito do mouse sobre o reator escolhendo a opção |Recalcular|.

Reator CSTR

b) Mantendo o fluxo molar da alimentação em 2 mol/s , plote um gráfico de fração molar de EtO versus Volume de reator (V= 1; 2; 3;...; 9; 10 m³).

Reator PFR

Substitua o CSTR da última simulação por um PFR, considere uma variação no volume de 0,05 e refaça os itens a e b

