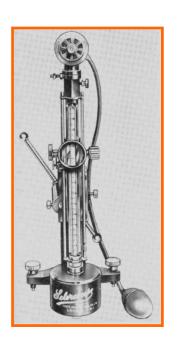
2 – MEDIDAS DE DUREZA

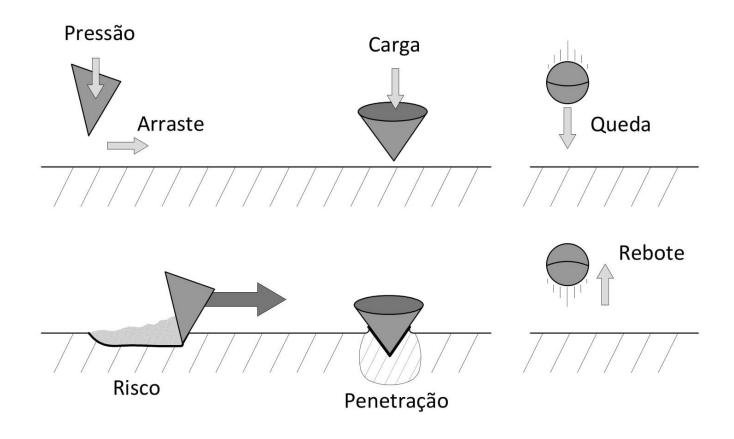
Conceito de Dureza:


- Não há uma definição precisa
- Medidas resultam em números arbitrários que dependem do tipo de ensaio
- Engenharia mecânica e de materiais

 Resistência à deformação plástica
- Métodos mais simples e rápidos para caracterização mecânica dos materiais
- * A dureza pode ser mandatória em especificação e controle de qualidade

Principais Tipos de Ensaios:

- Risco
- Rebote
- Penetração



v

Principais modos de se medir a dureza

Dureza por Risco:

- Friedrich Mohs (1822) → Mineralogia
- **Testes Manuais Simples**
- Não adequada para metais de alta dureza

1 - Talco

2 - Gipsita

3 - Calcita

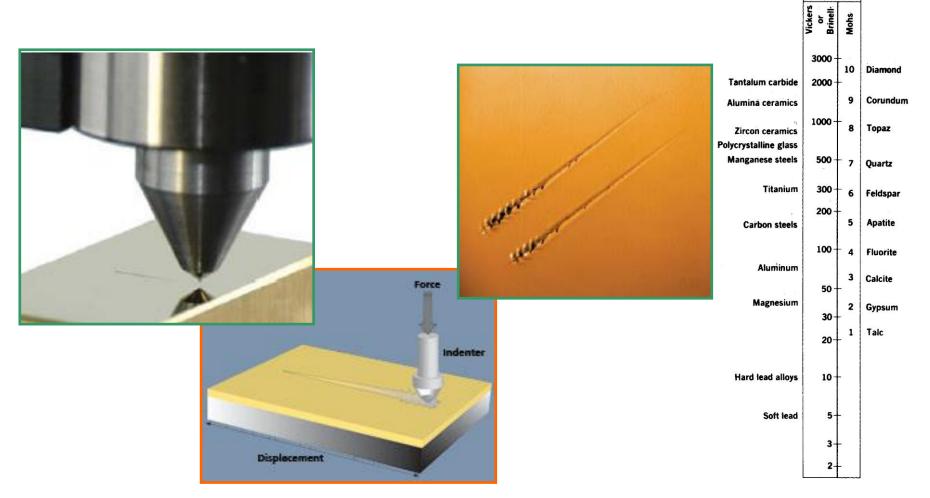
4 - Fluorita

5 - Apatita

6 – Ortoclásio

7 - Quartzo

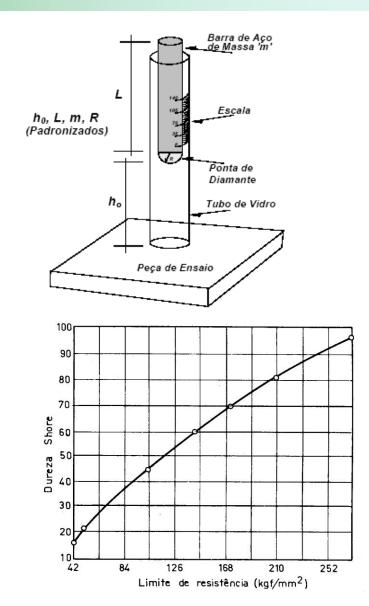
8 - Topázio



9 - Corindo 10 - Diamante

Aplicação de ensaio ao risco:

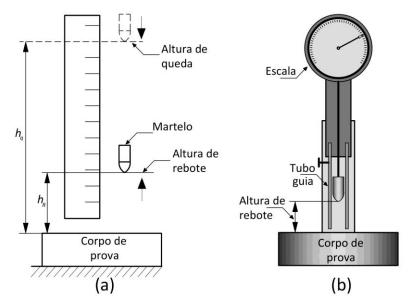
Propriedades mecânicas de coatings superficiais

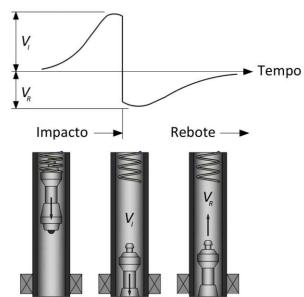


Hardness

- Ensaio Dinâmico (pêndulo ou queda livre)
- Martel (1895) → Êmbolo com Penetrador
 ↓
 Dureza = m· h / V
- Shore (1907) → Altura de Rebote de martelo
 ↓
 Tubo graduado de 0 a 140

• Leeb (1975) \rightarrow Relação entre Velocidades $\downarrow \downarrow$ $HL = (v_R / v_I) \cdot 1000$


Dureza por Rebote:


Dureza Shore:

- ✓ Norma ASTM E 448
- ✓ Esfera ou barra arredondada
- ✓ Posição vertical
- √ Ensaios em aços endurecidos
- √ Máquina leve e portátil
- ✓ Uso em peças acabadas grandes

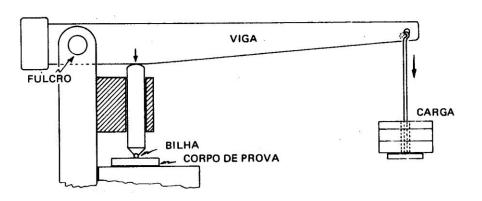
Dureza Leeb:

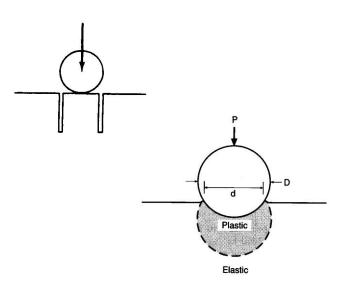
- ✓ Norma ASTM A 956
- ✓ Martelo é impulsionado por uma mola
- ✓ Sensor mede a velocidade
- ✓ Ensaio dura menos de 2 segundos
- ✓ Peça deve ter no mínimo 5 kg
- ✓ Recomendado para situações em que não é viável enviar amostras ao laboratório

Dureza por Penetração:

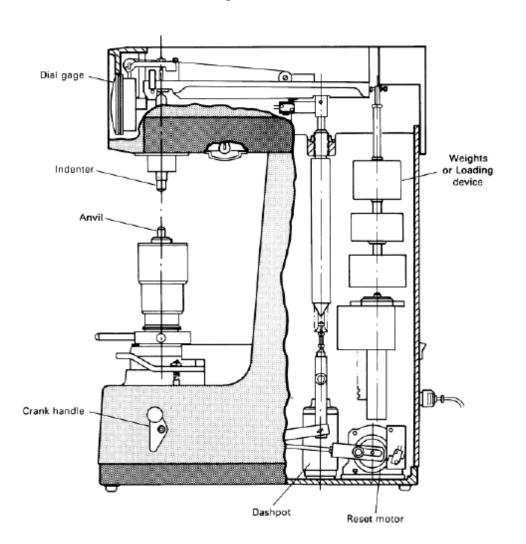
- Impressão Estática por um Penetrador
- Rapidez e Baixo Custo
- Eventualmente N\u00e400-Destrutivo
- Estimativa de Outras Propriedades

Alguns Métodos Padronizados (ASTM):


- Brinell (E 10)
- Rockwell (E 18)
- Vickers (E 92)
- Tabelas de Conversão (E 140)
- Microdureza Vickers e Knoop (E 384)


Valores de Dureza Levam em Conta:

- Superfície da Impressão
- Profundidade de Penetração


$$\sigma_{y} = \frac{2\sigma_{0}}{\sqrt{3}} \left(1 + \frac{\pi}{2} \right) \approx 3\sigma_{0}$$

м

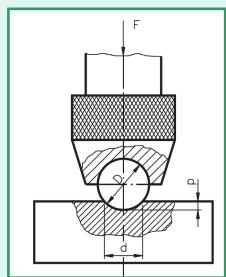
Dureza por Penetração: Equipamento e cuidados gerais:

Dureza Brinell:

- Proposto por J. A. Brinell em 1900
- Penetrador esférico (diâmetro D)
- Metal com Superfície Plana, Polida e Limpa
- Aplica-se Carga Q durante Tempo t
- Impressão com formato de Calota Esférica
- Toma-se 2 leituras da Impressão d
- Definida em kgf/mm² (Carga/Área Contato)

Número de Dureza Brinell:

$$HB = \frac{Q}{\pi D\rho} = \frac{Q}{(\pi D/2) \left(D - \sqrt{D^2 - d^2}\right)}$$

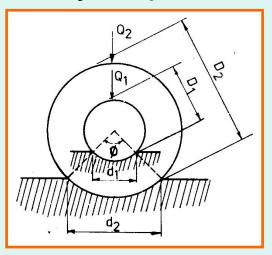

onde p é a profundidade da impressão (não medida no ensaio)

Padrão (pode variar em alguns casos):

$$\checkmark Q = 3.000 \, kgf$$

$$\checkmark D = 10 mm$$

$$\checkmark t = 30 \text{ s}$$

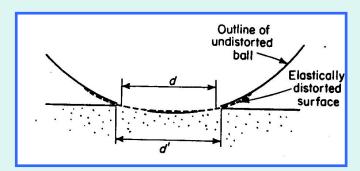


M

Dureza Brinell:

- Os padrões de Q, D e t não são adequados para todos os metais.
 - Problema: comparação de durezas obtidas com diferentes valores de Q e D
 - Solução: impressões semelhantes (mesmo ϕ) devem ter o mesmo valor de HBN

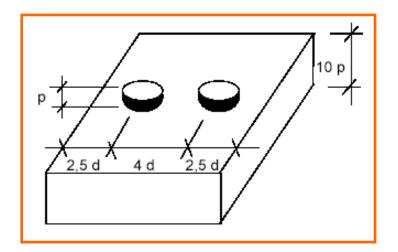
É fácil mostrar que:


$$HB = \frac{2P}{\pi D^2 (1 - \cos \phi)}$$

Portanto, deve valer:

$$\frac{Q_1}{D_1^2} = \frac{Q_2}{D_2^2}$$

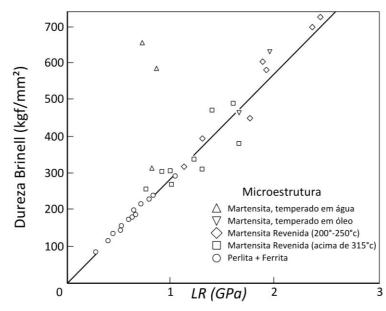
- Problema: deformação elástica da esfera se o corpo-de-prova for muito duro
- Solução: esfera de WC



Dureza Brinell:

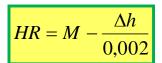
Cuidados e Restrições:

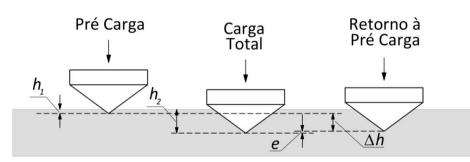
- √ Afastamento da borda 2,5 d
- √ Espessura da amostra 10 d
- ✓ Distância de impressões 4 d (ferrosos)
- ✓ Raio Curvatura mínimo 5 D



Condições do ensaio com D = 10 mm:

Carga (kgf)	Tempo (s)	Aplicação Típica	Relação P/D ²
3000	10-15	Aço e Ferro Fundido	30
500	30	Ligas de Cobre e Alumínio	5
100	30	Ligas de Chumbo e Estanho	1


Relação entre dureza Brinell e resistência à tração:

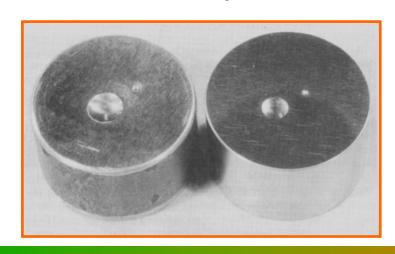

LR (MPa) = 3,45 HB (kgf/mm²)

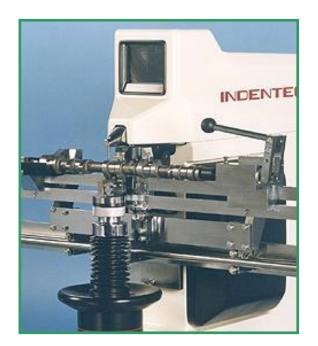
Dureza Rockwell:

- Elaborado por Rockwell em 1922
- Baseia-se na Profundidade de Impressão
- Penetrador Esférico ou Cônico (Brale)
- Resultado é lido Diretamente na Máquina
- O Valor da Dureza é Adimensional
- Escalas com máximo 100 (Brale) ou 130
- Notação: HRx, onde x é a escala (A, B etc)
- Apropriado para Linhas de Produção
- Também usado para Dureza Superficial

Vantagens:

- Mais rápido e livre de erros do operador
- Pequeno tamanho da impressão
- Distingue pequenas diferenças de dureza <u>Desvantagem:</u>
- -Diversas escalas independentes (difícil correlação)

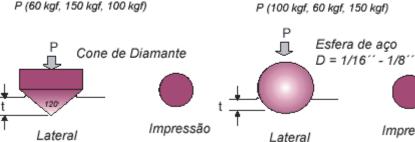

Dureza Rockwell:

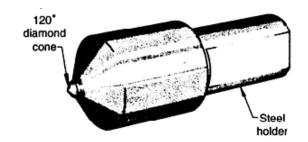


Comparação de impressões Brinell e Rockwell em dois aços distintos:

Dureza Rockwell:

COMMONLY USED ROCKWELL HARDNESS SCALES


Symbol, HRX $X =$	Penetrator Diameter if Ball, mm (in)	Load kg	Typical Application	
A	Diamond point	60	Tool materials	
D	Diamond point	100	Cast irons, sheet steels	
С	Diamond point	150	Steels, hard cast irons, Ti alloys	
В	1.588 (0.0625)	100	Soft steels, Cu and Al alloys	
Е	3.175 (0.125)	100	Al and Mg alloys, other soft metals; reinforced polymers	
M	6.35 (0.250)	100	Very soft metals; high modulus polymers	
R	12.70 (0.500)	60	Very soft metals; low modulus polymers Rockwell	

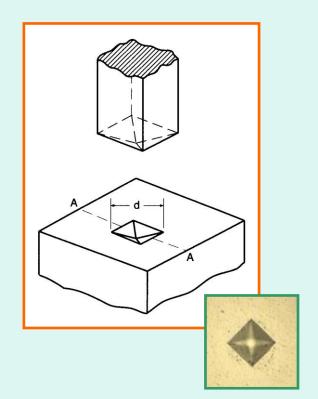


Durômetro Rockwell com adaptador "pescoço de ganso"

Rockwell (B, F, G)

(A, C, D) P (60 kgf, 150 kgf, 100 kgf)

Impressão

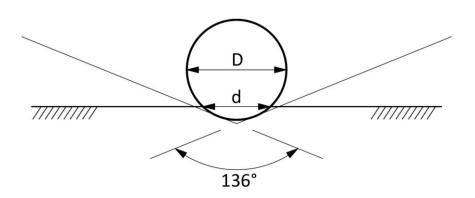


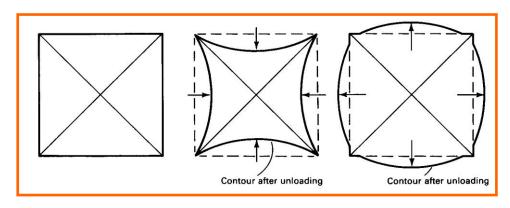
- Introduzido em 1925 por Smith e Sandland
- Penetrador: Pirâmide de Diamante (136°)
- Carga entre 1 e 120 kgf
- Impressão em forma de Losango
- Definida em kgf/mm² (Carga/Área Superfície)
- Mais usado em Pesquisas

Valor da dureza Vickers:

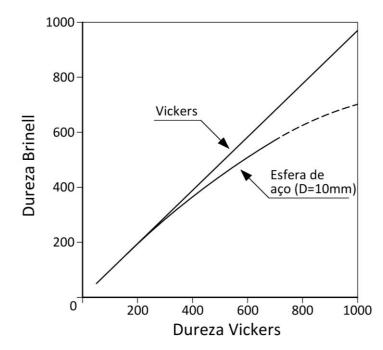
$$HVN = \frac{1,8544Q}{d^2}$$

Vantagens:


- Impressões geometricamente similares (menor dependência entre HVN e Carga)
- Escala contínua para todas faixas de dureza
- Penetrador indeformável Desvantagem:
- Mais demorado, exige preparo cuidadoso

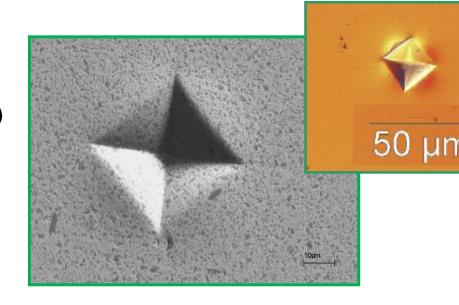


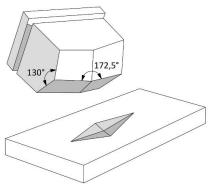
Dureza Vickers:


Escolha do penetrador Vickers: ângulo formado pelas retas tangentes à esfera Brinell quando d/D = 0,375

Anomalias encontradas nas impressões:

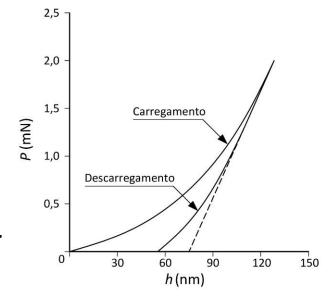
Comparação de resultados de dureza Vickers e Brinell:

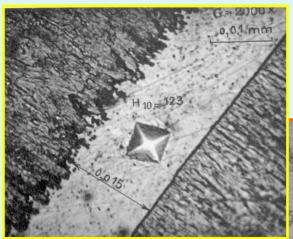



Microcureza Vickers e Knoop:

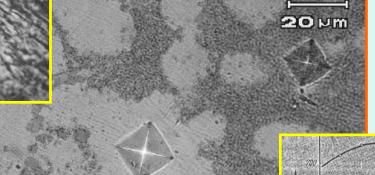
Problemas metalúrgicos

Avaliar pequenas áreas (Q < 200 gf)



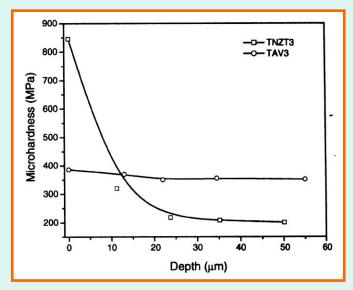

$$HK = 14,229 \frac{P}{d_M^2}$$

Ensaio instrumentado:

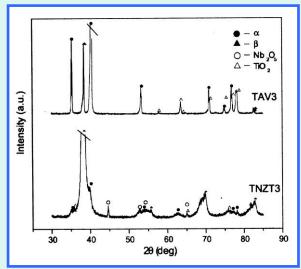


<u>Exemplos – Microdureza:</u>

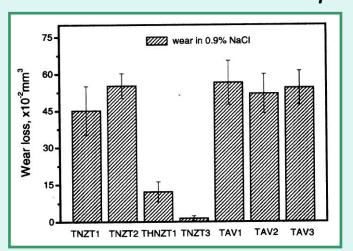
Avaliação de metal eletrodepositado


Liga de Al-Si hipoeutética: Fase clara (rica em Al); Fase escura (eutético)

Endurecimento superficial de aço (microdureza Knoop)

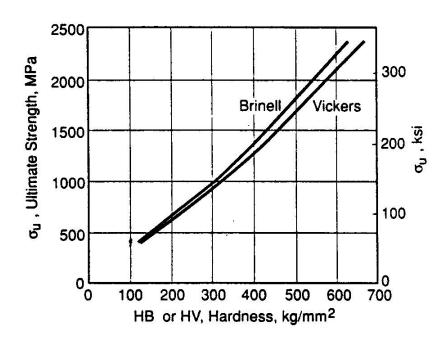


Exemplo – Microdureza e Resistência ao Desgaste:


- Ligas para aplicações biomédicas:
 (TAV = Ti-6AI-4V TNZT = Ti-29Nb-13Ta-4,6Zr)
- Efeito de Oxidação ao Ar

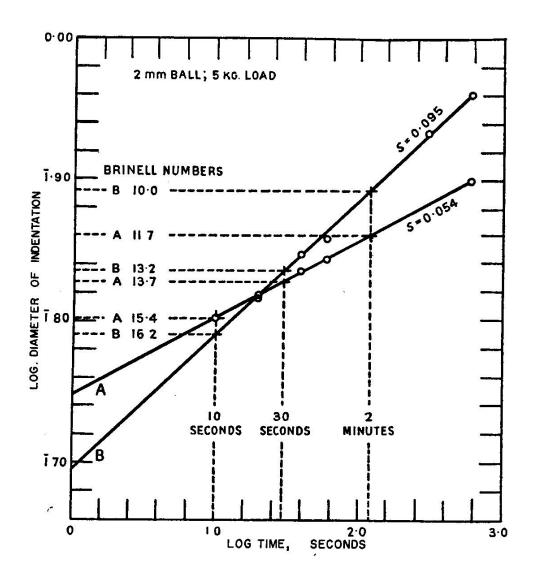
Variação da microdureza com a profundidade

Difratogramas das ligas após os tratamentos



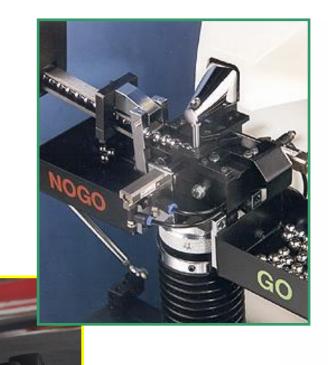
Ensaios de desgaste pin-on-disc

Relação entre Dureza e Resistência à Tração:



APPROXIMATE EQUIVALENT
HARDNESS NUMBERS AND ULTIMATE TENSILE
STRENGTHS FOR CARBON AND ALLOY STEELS

Brinell	Vickers .	Rockwell		Ultimate, σ_u	
HB		HRB	HRC	MPa	ksi
627	667		58.7	2393	347
578	615	-	56.0	2158	313
534	569	2	53.5	1986	288
495	528	500	51.0	1813	263
461	491		48.5	1669	242
429	455		45.7	1517	220
401	425		43.1	1393	202
375	396		40.4	1267	184
341	360		36.6	1131	164
311	328		33.1	1027	149
277	292		28.8	924	134
241	253	100	22.8	800	116
217	228	96.4		724	105
197	207	92.8		655	95
179	188	89.0		600	87
159	167	83.9	_	538	78
143	150	78.6	_	490	71
131	137	74.2		448	65
116	122	67.6	_	400	58



Efeito da Fluência:

Mais Exemplos – Emprego do Ensaio de Dureza:

