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Chapter 3
Thermodynamics and 

Phase Diagrams

TherMoDynAMICS is a branch of physics and chemistry that cov-
ers a wide field, from the atomic to the macroscopic scale. In materials 
science, thermodynamics is a powerful tool for understanding and solving 
problems. Chemical thermodynamics is the part of thermodynamics that 
concerns the physical change of state of a chemical system following the 
laws of thermodynamics. The thermodynamic properties of individual 
phases can be used for evaluating their relative stability and heat evolution 
during phase transformations or reactions. Traditionally, one of the most 
common applications of chemical thermodynamics is for the construction 
and interpretation of phase diagrams.

The thermodynamic quantities that are most frequently used in materi-
als science are the enthalpy, in the form of the heat content of a phase; the 
heat of formation of a phase, or the latent heat of a phase transformation; 
the heat capacity, which is the change of heat content with temperature; the 
Gibbs free energy, which determines whether or not a chemical reaction is 
possible; and the chemical potential or chemical activity, which describes 
the effect of compositional change in a solution phase on its energy. All of 
these thermodynamic quantities are part of the energy content of a system 
and are governed by the three laws of thermodynamics.

3.1 Three Laws of Thermodynamics

A physical system consists of a substance, or a group of substances, that 
is isolated from its surroundings, a concept used to facilitate study of the 
effects of conditions of state. Isolated means that there is no interchange 
of mass between the substance and its surroundings. The substances in 
alloy systems, for example, might be two metals, such as copper and zinc; 
a metal and a nonmetal, such as iron and carbon; a metal and an interme-
tallic compound, such as iron and cementite; or several metals, such as 
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aluminum, magnesium, and manganese. These substances constitute the 
components comprising the system. however, a system can also consist of 
a single component, such as an element or compound.

The sum of the kinetic energy (energy of motion) and potential energy 
(stored energy) of a system is called its internal energy, E. Internal energy 
is characterized solely by the state of the system. A thermodynamic system 
that undergoes no interchange of mass (material) with its surroundings is 
called a closed system. A closed system, however, can interchange energy 
with its surroundings.

First Law. The First Law of Thermodynamics, as stated by Julius von 
Mayer, James Joule, and hermann von helmholtz in the 1840s, states that 
energy can be neither created nor destroyed. Therefore, it is called the Law 
of Conservation of energy. This law means that the total energy of an iso-
lated system remains constant throughout any operations that are carried 
out on it; that is, for any quantity of energy in one form that disappears 
from the system, an equal quantity of another form (or other forms) will 
appear. For example, consider a closed gaseous system to which a quantity 
of heat energy, δQ, is added and a quantity of work, δW, is extracted. The 
First Law describes the change in internal energy, dE, of the system as:

dE = δQ – δW (eq 3.1)

In the vast majority of industrial processes and material applications, 
the only work done by or on a system is limited to pressure/volume terms. 
Any energy contributions from electric, magnetic, or gravitational fields 
are neglected, except for electrowinning and electrorefining processes such 
as those used in the production of copper, aluminum, magnesium, the alka-
line metals, and the alkaline earths. When these field effects are neglected, 
the work done by a system can be measured by summing the changes in 
volume, dV, times each pressure, P, causing a change. Therefore, when field 
effects are neglected, the First Law can be written:

dE =δQ – PdV (eq 3.2)

Second Law. While the First Law establishes the relationship between 
the heat absorbed and the work performed by a system, it places no 
restriction on the source of the heat or its flow direction. This restric-
tion, however, is set by the Second Law of Thermodynamics, which was 
advanced by rudolf Clausius and William Thomson (Lord Kelvin). The 
Second Law states that the spontaneous flow of heat always is from the 
higher-temperature body to the lower-temperature body. In other words, 
all naturally occurring processes tend to take place spontaneously in the 
direction that will lead to equilibrium.
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The entropy, S, represents the energy (per degree of absolute tempera-
ture, T) in a system that is not available for work. In terms of entropy, the 
Second Law states that all natural processes tend to occur only with an 
increase in entropy, and the direction of the process is always such as to 
lead to an increase in entropy. For processes taking place in a system in 
equilibrium with its surroundings, the change in entropy is defined as:

dS Q
T

dE PdV
T

∫ ∫δ +

 
(eq 3.3)

Third Law. A principle advanced by Theodore richards, Walter nernst, 
Max Planck, and others, often called the Third Law of Thermodynamics, 
states that the entropy of all chemically homogeneous materials can be 
taken as zero at absolute zero temperature (0 K). This principle allows 
calculation of the absolute values of entropy of pure substances solely from 
their heat capacity.

3.2 Gibbs Free Energy

Josiah Willard Gibbs (1839–1903) was an American theoretical physi-
cist, chemist, and mathematician. he devised much of the theoretical 
foundation for chemical thermodynamics and physical chemistry. yale 
University awarded Gibbs the first American Ph.D. in engineering in 1863, 
and he spent his entire career at Yale. Between 1876 and 1878, Gibbs wrote 
a series of papers on the graphical analysis of multiphase chemical sys-
tems. These were eventually published together in a monograph titled On 
the Equilibrium of Heterogeneous Substances, his most renowned work. 
It is now deemed one of the greatest scientific achievements of the 19th 
century and one of the foundations of physical chemistry. In these papers 
Gibbs applied thermodynamics to interpret physicochemical phenomena, 
successfully explaining and interrelating what had previously been a mass 
of isolated facts.

For transformations that occur at constant temperature and pressure, the 
relative stability of the system is determined by its Gibbs free energy:

G ∫ H – TS (eq 3.4)

where H is the enthalpy. enthalpy is a measure of the heat content of the 
system and is given by:

H = E + PV (eq 3.5)

The internal energy, E, is equal to the sum of the total kinetic and poten-
tial energy of the atoms in the system. Kinetic energy results from the 
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vibration of the atoms in solids or liquids, and the translational and rota-
tional energies of the atoms and molecules within a liquid or gas. Potential 
energy results from the interactions or bonds between the atoms in the 
system. If a reaction or transformation occurs, the heat that is absorbed 
(endothermic) or given off (exothermic) depends on the change of the inter-
nal energy of the system. It also depends on the changes in the volume of 
the system which is accounted for by the term PV. At a constant pressure, 
the heat absorbed or given off is given by the change in H. When deal-
ing with condensed phases (solids or liquids), the term PV is usually very 
small in comparison to E, and therefore H ≈ E. Finally, the entropy, S, is a 
measure of the randomness of the system.

A system is considered to be in equilibrium when it is in its most stable 
state and has no desire to change with time. At a constant temperature and 
pressure, a system with a fixed mass and composition (a closed system) 
will be in a state of stable equilibrium if it has the lowest possible value 
of the Gibbs free energy:

dG = 0 (Eq 3.6)

From this definition of free energy, the state with the highest stability 
will be the one with the lowest enthalpy and the highest entropy. Therefore, 
at low temperatures, solid phases are the most stable because they have 
the strongest atomic bonding and therefore the lowest enthalpy (internal 
energy). however, at high temperatures, the –TS term dominates and the 
liquid and eventually the vapor phases becomes the most stable. In pro-
cesses where pressure changes are important, phases with small volumes 
are most stable at high pressures.

The definition of equilibrium given in Eq 3.6 is illustrated graphically in 
Fig. 3.1. The various possible atomic configurations are represented by the 
points along the abscissa. The configuration with the lowest free energy, 
G, will be the stable equilibrium configuration. Therefore, configuration A 
would be the stable equilibrium configuration. There are other configura-
tions, such as configuration B, which lie at a local minimum of free energy 
but do not have the lowest possible value of G. Such configurations are 
called metastable equilibrium states to distinguish them from the stable 
equilibrium state. The other configurations that lie between A and B are 
intermediate states for which dG ≠ 0 and are unstable and will disappear 
at the first opportunity; that is, if a change in thermal fluctuations causes 
the atoms to be arranged into an unstable state, they will rapidly rear-
range themselves into one with a free-energy minima. An example of a 
metastable configuration state is diamond. Given enough time, diamond 
will convert to graphite, the stable equilibrium configuration. However, as 
in diamond, metastable equilibrium can, for all practical instances, exist 
indefinitely.

5342_ch03_6111.indd   44 3/2/12   12:23:21 PM



Chapter 3: Thermodynamics and Phase Diagrams / 45

Any transformation that results in a decrease in Gibbs free energy, G, 
is possible. Any reaction that results in an increase in G is impossible and 
will not occur. Therefore, the necessary criterion for any phase transfor-
mation is:

DG = G2 – G1 < 0 (eq 3.7)

where G1 and G2 are the free energies of the initial and final states, respec-
tively. It is not necessary that the transformation immediately go to the 
stable equilibrium state. It may go through a whole series of intermediate 
metastable states.

Sometimes metastable states can be very short-lived, or at other times 
they can exist almost indefinitely. These are explained by the free-energy 
hump between the metastable and equilibrium states in Fig. 3.1. In general, 
higher free-energy humps, or energy barriers, lead to slower transforma-
tion rates.

Free Energy of Single-Component Systems 
A single-component unary system is one containing a pure metal or one 

type of molecule that does not disassociate over the temperature range of 
interest. Consider the phase changes that occur with changes in tempera-
ture at a constant pressure of one atmosphere. To predict the phase changes 
that are stable, or mixtures that are equilibrium at different temperatures, 
it is necessary to be able to calculate the variation of G with T.

Specific heat is the quantity of heat required to raise the temperature of 
the substance by 1 K. At constant pressure, the specific heat, Cp, is given 
by:

Fig. 3.1 Gibbs free energy for different atomic configurations in a system. 
Configuration A has the lowest free energy and therefore is the 

arrangement of stable equilibrium. Configuration B is in a state of metastable 
equilibrium. adapted from ref 3.1
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C H
Tp

p

= ∂
∂





  (eq 3.8)

The specific heat of a substance varies with temperature in the manner 
shown in Fig. 3.2(a). Therefore, the variation of H with T can be obtained 
from the knowledge of the variation of Cp with T. The enthalpy, H, is usu-
ally measured by setting H = 0 for a pure element in its most stable state 
at room temperature (298 K, or 25 °C or 77 °F). The variation of H with T 
is then calculated by integrating eq 3.8, that is:

H C dT
T

= ∫ p
298  

(eq 3.9)

The slope of the H-T curve is Cp, as shown in Fig. 3.2(b).
The variation of entropy with temperature can also be derived from the 

specific heat, Cp. From thermodynamics:

C
T

S
T

p

p

= ∂
∂





  (eq 3.10)

Because entropy is zero at 0 K, eq 3.10 can be integrated to give:

S
C
T

dT
T

= ∫ p

0

 (eq 3.11)

as shown in Fig. 3.2(c).
By combining Fig. 3.2(a) and (b) and using eq 3.4, the variation of G 

with temperature shown in Fig. 3.3 is obtained. When temperature and 
pressure vary, the change in free energy, G, can be obtained for a system 
with fixed mass and composition from:

Fig. 3.2 (a) Variation of Cp with absolute temperature, T. (b) Variation of enthalpy, H, with absolute temperature 
for a pure metal. (c) Variation of entropy, S, with absolute temperature. adapted from ref 3.1
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dG = – SdT + VdP (eq 3.12)

At constant pressure, dP = 0 and:

∂
∂





 = −G

T
S

p
 (eq 3.13)

This equation shows that G decreases with increasing T at a rate given 
by –S. The relative positions of the free-energy curves of solid and liq-
uid phases are shown in Fig. 3.4. At all temperatures, the liquid has a 
higher enthalpy (internal energy) than the solid phase. Therefore, at low 
temperatures, GL > GS. however, the liquid phase has a higher entropy 
than the solid phase and the Gibbs free energy of the liquid therefore 
decreases more rapidly with increasing temperature than that for the solid. 
For temperatures up to Tm, the solid phase has the lowest free energy and 
is therefore the equilibrium state of the system. At Tm, both phases have 
the same value of G and both the solid and liquid can coexist in equilib-
rium. Therefore, Tm is the equilibrium melting temperature at the pressure 
concerned.

If a pure component is heated from absolute zero, the heat supplied will 
raise the enthalpy at a rate determined by Cp (solid) along line ab in Fig. 
3.4. Meanwhile, the free energy will decrease along line ae. At Tm, the 
heat supplied to the system will not raise its temperature but will be used 
to supply the latent heat of melting, L, that is required to convert the solid 
into a liquid (line bc in Fig. 3.4). note that at Tm the specific heat appears 
to be infinite because the addition of heat does not appear as an increase in 

Fig. 3.3 Variation of Gibbs free energy with temperature. adapted from ref 
3.1
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temperature. When all the solid has transformed into liquid, the enthalpy 
of the system follows the line cd while the free energy, G, decreases along 
line ef. At still higher temperatures than those shown in Fig. 3.4, the free 
energy of the gas phase at atmospheric pressure becomes lower than the 
liquid, and the liquid transforms in a gas.

The equilibrium temperatures discussed so far only apply at a specific 
pressure (1 atm). At other pressures, the equilibrium temperatures will 
differ. For example, the effect of pressure on the equilibrium temperatures 
for pure iron is shown in Fig. 3.5. Increasing pressure has the effect of 
depressing the α–γ equilibrium temperature and raising the equilibrium 
melting temperature. At very high pressures, hexagonal close-packed (hcp) 
ε–iron becomes stable. The reason for these changes can be explained by 
eq 3.12. At constant temperature, the free energy of a phase increases with 
pressure such that:

∂
∂





 =G

T
V

T
 (eq 3.14)

If the two phases in equilibrium have different molar volumes, their 
respective free energies will not increase by the same amount at a given 

Fig. 3.4 Variation of enthalpy, H, and free energy, G, with temperature for 
the solid and liquid phases of a pure metal. L, latent heat of melting. 

Tm, equilibrium melting temperature. adapted from ref 3.1
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temperature and equilibrium will be disturbed by changes in pressure. The 
only way to maintain equilibrium at different pressures is by varying the 
temperature.

If the two phases in equilibrium are α and β, the application of eq 3.12 
to 1 mol of both gives:

dG V dP S dT
dG V dP S dT

m

m

α α α

β β β

= −

= −
 (eq 3.15)

If α and β are in equilibrium, Gα = Gβ, and therefore dGα = dGβ, and:

dP
dT

S S
V V

S
Veq m m





 = −

−
=

β α

β α

D
D  (Eq 3.16)

This equation gives the change in temperature, dT, required to maintain 
equilibrium between α and β if pressure is increased by dP. The equation 
can be simplified as follows. From Eq 3.4:

Gα = Hα – TSα

Gβ = Hβ – TSβ

Putting DG = Gβ – Gα gives:

DG = DH – TDS

Fig. 3.5 effect of pressure on the equilibrium phase diagram for pure iron. 
adapted from ref 3.1
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But because at equilibrium Gβ = Gα, DG = 0 and:

DH – TDS = 0

As a result, Eq 3.16 becomes:

dP
dT

H
T Veq





 = D

D  (eq 3.17)

which is one form of the Clausius-Clapeyron equation. Because close-
packed γ-iron has a smaller molar volume than α-iron, DV = Vmβ – Vmα 
< 0, while DH = Hγ – Hα < 0 for the same reason a liquid has a higher 
enthalpy than a solid, so that dP/dT is negative; that is, an increase in pres-
sure lowers the equilibrium transition temperature. on the other hand, the 
δ–L equilibrium temperature is raised with increasing pressure due to the 
larger molar volume of the liquid phase. The effect of increasing pressure 
is to increase the area of the phase diagram over which the phase with the 
smallest molar volume is stable (γ-iron in Fig. 3.5).

In dealing with phase transformations, it is important to be concerned 
with the difference in free energy between two phases at temperatures away 
from the equilibrium temperature. For example, if a liquid is undercooled 
by DT below the Tm before it solidifies, solidification will be accompanied 
by a decrease in free energy, DG, as shown in Fig. 3.6. This free-energy 
decrease provides the driving force for solidification. The magnitude of 
this change can be obtained as follows. The free energies of the liquid and 
solid at a temperature, T, are given by:

GL = HL – TSL

GS = HS – TSS

Therefore, at a temperature, T:

DG = DH – TDS (eq 3.18)

where:

DH = HL – HS and DS = SL – SS

At the equilibrium melting temperature, Tm, the free energies of a solid 
and liquid are equal (DG = 0). Therefore:

DG = DH – TmDS = 0

and at Tm:
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D DS H
T

L
T

= =
m m

 (eq 3.19)

This is known as the entropy of fusion. It is observed experimentally 
that the entropy of fusion is a constant ≈ R (8.4 Jmol–1K–1) for most metals 
per richard’s rule. This is not unexpected because metals with high bond 
strengths can be expected to have high values for both L and Tm.

For small undercoolings, DT, the difference in specific heats of the liquid 
and the solid (Cp

L – Cp
S) can be ignored. Both DH and DS are therefore 

independent of temperature. Combining eq 3.18 and 3.19 gives:

DG L T L
T

≅ =
m

For a small DT:

D DG L T
T

≅
m

 (eq 3.20)

3.3 Binary Solutions

In single-component systems all phases have the same composition, and 
equilibrium only depends on pressure and temperature as variables. how-
ever, in alloys composition is also variable. Therefore, to understand phase 
changes in alloys requires the knowledge of how the Gibbs free energy of 
a given phase depends on composition as well as temperature and pres-

Fig. 3.6 Difference in free energy between liquid and solid close to the melt-
ing point. the curvature of GS and GL has been ignored. adapted 

from ref 3.1
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sure. Because the important phase transformations in metallurgy mainly 
occur at a fixed pressure of 1 atm, the focus is on changes in composition 
and temperature. In order to introduce some of the basic concepts of the 
thermodynamics of alloys, a simple physical model for binary solid solu-
tions is presented.

3.3.1 Gibbs Free Energy of Binary Solutions

The Gibbs free energy of a binary solution of A and B atoms can be 
calculated from the free energies of pure A and pure B. It is assumed that 
A and B have the same crystal structures in their pure states and can be 
mixed in any proportions to make a solid solution with the same crystal 
structure. Consider the case where 1 mol of homogeneous solid solution is 
made by mixing together XA mol of A and XB mol of B. Because there is a 
total of 1 mol of solution:

XA + XB = 1 (eq 3.21)

and XA and XB are the mole fractions of A and B, respectively, in the alloy. 
To calculate the free energy of the alloy, mixing can be made in two steps 
(Fig. 3.7):

Bring together 1. XA mol of pure A and XB mol of pure B.
Allow the 2. A and B atoms to mix together to make a homogeneous 
solid solution.

Fig. 3.7 Free energy of mixing. adapted from ref 3.1

5342_ch03_6111.indd   52 3/2/12   12:23:27 PM



Chapter 3: Thermodynamics and Phase Diagrams / 53

After step 1, the free energy of the system is given by:

G1 = XAGA + XBGB (eq 3.22)

where GA and GB are the molar free energies of pure A and pure B at the 
temperature and pressure. G1 can be most conveniently represented on a 
molar free-energy diagram (Fig. 3.8) in which molar free energy is plotted 
as a function of XB or XA. For all alloy compositions, G1 lies on the straight 
line between GA and GB.

The free energy of the system will not remain constant during mixing of 
the A and B atoms, and after step 2, the free energy of the solid solution, 
G2, can be expressed as:

G2 = G1 + DGmix (eq 3.23)

where DGmix is the change in Gibbs free energy caused by the mixing.
Because:

G1 = H1 = TS1

and:

G2 = H2 = TS2

putting:

DHmix = H2 – H1

and:

DSmix = S2 – S1

Fig. 3.8 Variation of G1 (the free energy before mixing) with composition (XA 
or XB). adapted from ref 3.1
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gives:

DGmix = DHmix – TDSmix (eq 3.24)

where DHmix is the heat absorbed or evolved during step 2;that is, it is the 
heat of solution and, ignoring volume changes during the process, it rep-
resents the difference in internal energy, E, before and after mixing. The 
difference in entropy between the mixed and unmixed states is DSmix.

3.3.2 Ideal Solutions

The simplest type of mixing occurs in the ideal solution where DHmix = 
0, and the free-energy change on mixing is therefore:

DGmix = –TDSmix (eq 3.25)

In statistical thermodynamics, entropy is quantitatively related to ran-
domness by the Boltzmann equation:

S = – k ln ω (Eq 3.26)

where k is Boltzmann’s constant and ω is a measure of randomness. There 
are two contributions to the entropy of a solid solution: (1) a thermal con-
tribution, Sth, and (2) a configurational contribution, Sconfig.

The measure of randomness (ω) is the number of ways in which the ther-
mal energy of the solid can be divided among the atoms, that is, the total 
number of ways in which vibrations can be set up in the solid. In solutions, 
additional randomness exists due to the different ways in which the atoms 
can be arranged. This gives extra entropy, Sconfig, for which ω is the number 
of distinguishable ways of arranging the atoms in the solution.

If there is no volume change or heat change during mixing, then the 
only contribution to DSmix is the change in configurational entropy. Before 
mixing, the A and B atoms are held separately in the system and there is 
only one distinguishable way in which the atoms can be arranged. Conse-
quently, S1 = k ln 1 = 0, and therefore DSmix = S2.

Assuming that A and B mix to form a substitutional solid solution and 
that all configurations of A and B atoms are equally probable, the number 
of distinguishable ways of arranging the atoms on the atom sites is:

ωconfig
A B

A B

N N
N N

=
+( )  !
! !

 (eq 3.27)

where NA is the number of A atoms and NB the number of B atoms.
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Because this involves 1 mol of solution, that is, Avogadro’s number of 
Na atoms:

NA = XANa

and:

NB = XBNb

Substituting into Eq 3.26 and 3.27, and using Stirling’s approximation 
(ln N ! ≈ N ln – N) and the relationship Na k = R, gives:

DSmix = –R(XA ln XA + XB ln Xb) (eq 3.28)

Because XA and XB are less than unity, DSmix is positive; that is, there is 
an increase in entropy on mixing, as expected. The free energy of mixing, 
DGmix, is obtained from eq 3.25 as:

DGmix = RT(XA ln XA + XB ln Xb) (eq 3.29)

Figure 3.9 shows DGmix as a function of composition and temperature.
The actual free energy of the solution, G, will also depend on GA and GB. 

From eq 3.22, 3.23, and 3.29:

G = G2 = XAGA + XBGB + RT(XA ln XA + XB ln Xb) (eq 3.30)

This is shown schematically in Fig. 3.10. note that, as the temperature 
increases, GA and GB decrease and the free-energy curves assume a greater 

Fig. 3.9 Free energy of mixing for an ideal solution. adapted from ref 3.1
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curvature. The decrease in GA and GB is due to the thermal entropy of both 
components and is given by eq 3.13.

3.4 Chemical Potential

In alloys it is important to know how the free energy of a given phase 
will change when atoms are added or removed. If a small quantity of A, 
dnA mol, is added to a large amount of a phase at constant temperature 
and pressure, the size of the system will increase by dnA, and the total free 
energy of the system will also increase by a small amount, dG¢. If dnA is 
small enough, dG¢ will be proportional to the amount of A added. Then it 
can be written:

dG¢ = mAdnA (T, P, nB constant) (eq 3.31)

The proportionality constant, mA, is called the partial molar free energy 
of A, or alternatively, the chemical potential of A in the phase. The chemi-
cal potential, mA, depends on the composition of the phase, and therefore 
dnA must be so small that the composition is not significantly altered. If Eq 
3.31 is rewritten, it can be seen that a definition of the chemical potential 
of A is:

mA
A T P n

G
n

B

= ∂ ′
∂





 , ,  

(eq 3.32)

The symbol G¢ has been used for the Gibbs free energy to emphasize 
the fact that it refers to the whole system. The usual symbol, G, will be 

Fig. 3.10 a combination of Fig. 3.8 and 3.9: the molar free energy (free 
energy per mole of solution) for an ideal solution. adapted from 

ref 3.1
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used to denote the molar free energy and is therefore independent of the 
size of the system.

equations similar to eq 3.31 and 3.32 can be written for the other com-
ponents in the solution. For a binary solution at constant temperature and 
pressure, the separate contributions can be summed:

dG¢ = mAdnA + mBdnB (eq 3.33)

This equation can be extended by adding further terms for solutions con-
taining more than two components. If T and P changes are also allowed, 
eq 3.12 must be added, giving the general equation:

dG¢ = –SdT + VdP + mAdnA + mBdnB + mCdnC = …

If 1 mol of the original phase contained XA mol A and XB mol B, the size 
of the system can be increased without altering its composition if A and 
B are added in the correct proportions; that is, such that dnA : dnB = XA : 
XB. For example, if the phase contains twice as many A as B atoms (XA = 
2/3, XB = 1/3), the composition can be maintained constant by adding two 
A atoms for every one B atom (dnA : dnB = 2). In this way, the size of the 
system can be increased by 1 mol without changing mA and mB. To do this, 
XA mol A and XB mol B must be added and the free energy of the system 
will increase by the molar free energy, G. Therefore, from eq 3.33:

G = mAXA + mBXB (eq 3.34)

where G is a function of XA and XB, as in Fig. 3.10. For example, mA and 
mB can be obtained by extrapolating the tangent to the G curve to the sides 
of the molar free-energy diagram (Fig. 3.11). remembering that XA + XA 

Fig. 3.11 the relationship between the free-energy curve for a solution and 
the chemical potentials of the components. adapted from ref 3.1
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= 1; that is, d XA = –d XB, this result can be obtained from eq 3.40 and 
3.41. From Fig. 3.11, it is seen that mA and mA vary systematically with the 
composition of the phase.

Comparison of eq 3.30 and 3.34 gives mA and mA for an ideal solution 
as:

mA = GA + RT ln XA (eq 3.35)
mB = GB + RT ln XB

which is a much simpler way of presenting eq 3.30. These relationships 
are shown in Fig. 3.12. The distances ac and bd are –RT ln XA and –RT 
ln XB.

3.5 Regular Solutions

returning to the model of a solid solution, so far it has been assumed 
that DHmix = 0; however, this type of behavior is rare in practice and usu-
ally mixing is endothermic (heat absorbed) or exothermic (heat evolved). 
however, the model used for ideal solution can be extended to include the 
DHmix term by using the so-called quasi-chemical approach.

In the quasi-chemical model, it is assumed that the heat of mixing DHmix 
is only due to the bond energies between adjacent atoms. For this assump-
tion to be valid, it is necessary that the volumes of pure A and B are equal 
and do not change during mixing so that the interatomic distances and 
bond energies are independent of composition.

The structure of a binary solid solution is shown schematically in Fig. 
3.13. Three types of interatomic bonds are present:

Fig. 3.12 the relationship between free energies and chemical potentials for 
an ideal solution. adapted from ref 3.1
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A• –A bonds, each with an energy εAA
B• –B bonds, each with an energy εBB
A• –B bonds, each with an energy εAB

By considering zero energy to be the state where the atoms are separated 
to infinity, εAA, εBB, and εAB are negative quantities and become increas-
ingly more negative as the bonds become stronger. The internal energy of 
the solution, E, will depend on the number of bonds of each type—PAA, 
PBB, and PAB—such that:

e = PAAεAA + PBBεBB + PABεAB

Before mixing, pure A and B contain only A–A and B–B bonds, respec-
tively, and by considering the relationships between PAA, PBB, and PAB in 
the solution, it can be shown that the change in internal energy on mixing 
is given by:

DHmix = PABε (Eq 3.36)

where:

ε ε ε ε= − +( )AB AA BB
1
2  (eq 3.37)

That is, ε is the difference between the A–B bond energy and the average 
of the A–A and B–B bond energies.

If ε = 0, DHmix = 0 and the solution is ideal. In this case the atoms are 
completely randomly arranged and the entropy of mixing is given by eq 
3.28. In such a solution it can also be shown that:

PAB = NazXAAXBB (eq 3.38)

Fig. 3.13 the different types of interatomic bonds in a solid solution. 
adapted from ref 3.1
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where Na is Avogadro’s number, and z is the number of bonds per atom.
If ε < 0, the atoms in the solution will prefer to be surrounded by atoms 

of the opposite type and this will increase PAB, whereas, if ε > 0, PAB will 
tend to be less than in a random solution. however, provided ε is not too 
different from zero, eq 3.38 is still a good approximation, in which case:

DHmix = WXAXB (eq 3.39)

where:

W = Nazε (eq 3.40)

real solutions that closely obey eq 3.39 are known as regular solutions. 
The variation of DHmix with composition is parabolic and is shown in Fig. 
3.14 for W > 0. note that the tangents at XA = 0 and 1 are related to W as 
shown.

The free-energy change on mixing a regular solution is given by eq 3.24, 
3.28, and 3.39 as:

DGmix = WXAXB + RT(XA ln XA + XB ln Xb) (eq 3.41)

where WXAXB is DHmix, and RT(XA ln XA + XB ln Xb) is –TDSmix.
This is shown in Fig. 3.15 for different values of W and temperature. 

For exothermic solutions, DHmix < 0, and mixing results in a free-energy 
decrease at all temperatures (Fig. 3.15a, b). When DHmix > 0, however, 
the situation is more complicated. At high temperatures, TDSmix is greater 
than DHmix for all compositions and the free-energy curve has a positive 
curvature at all points (Fig. 3.15c). on the other hand, at low temperatures, 
TDSmix is smaller and DGmix develops a negative curvature in the middle 
(Fig. 3.15d).

Fig. 3.14 the variation of DHmix with composition for a regular solution. 
adapted from ref 3.1
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Differentiating eq 3.28 shows that, as XA or XA Æ 0, the –TDSmix curve 
becomes vertical, while the slope of the DHmix curve tends to a finite 
value, W (Fig. 3.14). This means that, except at absolute zero, DGmix always 
decreases on the addition of a small amount of solute.

The actual free energy of the alloy depends on the values chosen for GA 
and GB and is given by eq 3.22, 3.33, and 3.41 as:

G = XAGA = XBGB + WXAXB + RT(XA ln XA + XB ln Xb) (eq 3.42)

This is shown in Fig. 3.16 along with the chemical potentials of A and B 
in the solution.

Using the relationship XAXB = XA
2XB + XB

2XA and comparing eq 3.34 
and 3.42 shows that for a regular solution:

mA = GA + W(1 – XA)2 + RT ln XA

Fig. 3.15 the effect of DHmix and T on DGmix. adapted from ref 3.1
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and (eq 3.43)
mB = GB + W(1 – XB)2 + RT ln XB

3.5.1 Activity

The chemical potential of an ideal alloy is given by eq 3.42. A similar 
expression for any solution is obtained by defining the activity of a com-
ponent (mA) such that the distances ac and bd in Fig. 3.16 are –RT ln aA 
and –RT ln aB. In this case:

mA = GA + RT ln aA

and (eq 3.44)
mB = GB + RT ln aB

In general, aA and aB will be different from XA and XB, and the relation-
ship between them will vary with the composition of the solution. For a 
regular solution, comparison of eq 3.43 and 3.44 gives:

ln

ln

a
X RT

X

a
X RT

A

A
A

B

B






= −( )






=

W

W

1

1

2

and

−−( )XB
2

 (eq 3.45)

The relationship between a and X for any solution can be represented 
graphically as illustrated in Fig. 3.17. Line 1 represents an ideal solution 
for which aA = XA and aB = XB. If DHmix < 0, the activity of the components 
in solution will be less in an ideal solution (line 2) and vice versa when 
DHmix > 0 (line 3).

The ratio (aA / XA) is usually referred to as γA, the activity coefficient of 
A, that is:

Fig. 3.16 the relationship between molar free energy and activity. adapted 
from ref 3.1
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γ A
A

A

a
X

=  (Eq 3.46)

For a dilute solution of B in A, Eq 3.45 can be simplified by letting XB 
Æ 0, in which case:

γ B
B

B

a
X

= = ′constant (henry s Law)  (eq 3.47)

and:

γ A
B

B

a
X

= = ′1  (raoult s law)  (eq 3.48)

Equation 3.47 is known as Henry’s law and Eq 3.46 as Raoult’s law. Both 
apply to all solutions when the solutions are sufficiently dilute.

Because activity is related to chemical potential by eq 3.44, the activity 
of a component is just another means of describing the state of the compo-
nent in a solution. no extra information is supplied, and its use is simply a 
matter of convenience because it often leads to simpler mathematics.

Activity and chemical potential are a measure of the tendency of an atom 
to leave a solution. If the activity or chemical potential is low, the atoms 
are reluctant to leave the solution, which means, for example, that the vapor 
pressure of the component in equilibrium with the solution will be rela-
tively low. The activity or chemical potential of a component is important 
when several condensed phases are in equilibrium.

Fig. 3.17 the variation of activity with composition (a) αB, and (b) αB. Line 
1: ideal solution (raoult’s law). Line 2: DHmix < 0. Line 3: DHmix > 

0. adapted from ref 3.1
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3.6 Real Solutions

While the previous model provides a useful description of the effects 
of configurational entropy and interatomic bonding on the free energy of 
binary solutions, its practical use is rather limited. For many systems, the 
model is an oversimplification of reality and does not predict the correct 
dependence of DGmix on composition and temperature.

As already indicated, in alloys where the enthalpy of mixing is not zero 
(ε and W ≠ 0), the assumption that a random arrangement of atoms is the 
equilibrium, or most stable arrangement, is not true, and the calculated 
value for DGmix will not give the minimum free energy. The actual arrange-
ment of atoms will be a compromise that gives the lowest internal energy 
consistent with sufficient entropy, or randomness, to achieve the minimum 
free energy. In systems with ε < 0, the internal energy of the system is 
reduced by increasing the number of A–B bonds, that is, by ordering the 
atoms as shown in Fig. 3.18(a). If ε > 0, the internal energy can be reduced 
by increasing the number of A–A and B–B bonds, that is, by the cluster-
ing of the atoms into A-rich and B-rich groups (Fig. 3.18b). however, the 
degree of ordering or clustering will decrease as temperature increases due 
to the increasing importance of entropy. In systems where there is a size 
difference between the atoms, the quasi-chemical model will underesti-
mate the change in internal energy on mixing, because no account is taken 
of the elastic strain fields that introduce a strain-energy term into DHmix. 
When the size difference is large, this effect can dominate over the chemi-
cal term. When the size difference between the atoms is very large, then 
interstitial solid solutions are energetically most favorable (Fig. 3.18c). In 
systems where there is strong chemical bonding between the atoms, there 
is a tendency for the formation of intermetallic phases. These are distinct 
from solutions based on the pure components because they have a different 
crystal structure and may also be highly ordered.

Fig. 3.18 Schematic representation of solid solutions. (a) Ordered substitutional. (b) Clustering. (c) random 
interstitial. adapted from ref 3.1
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3.6.1 Equilibrium in Heterogeneous Systems

Metals A and B usually do not have the same crystal structure when 
mixed into a solution. In such cases, two free-energy curves must be 
drawn, one for each structure. The stable forms of pure A and B at a given 
temperature (and pressure) can be denoted as α and β, respectively. For 
the sake of illustration, let α be face-centered cubic (fcc) and β be body-
centered cubic (bcc). The molar free energies of fcc A and bcc B are shown 
in Fig. 3.19(a) as points a and b. The first step in drawing the free-energy 
curve of the fcc A phase is to convert the stable bcc arrangement of B atoms 
into an unstable fcc arrangement. This requires an increase in free energy, 
be. The free-energy curve for the α phase can now be constructed as before 
by mixing fcc A and fcc B, as shown in the figure. The distance de gives 
–DGmix for α of composition X. A similar procedure produces the molar 
free-energy curve for the β phase (Fig. 3.19b). The distance af is now the 
difference in free energy between bcc A and fcc A.

It is clear from Fig. 3.19(b) that A-rich alloys will have the lowest free 
energy as a homogeneous α phase and B-rich alloys as β phase. For alloys 
with compositions near the crossover in the G curves, the situation is not 
so straightforward. In this case it can be shown that the total free energy 
can be minimized by the atoms separating into two phases.

It is first necessary to consider a general property of molar free-energy 
diagrams when phase mixtures are present. Suppose an alloy consists of 
two phases, α and β, each of which has a molar free energy given by Gα 
and Gβ, respectively (Fig. 3.20). If the overall composition of the phase 
mixture is XB

0, the lever rule gives the relative number of moles of α and 
β that must be present, and the molar free energy of the phase mixture, 
G, is given by the point on the straight line between α and β, as shown in 
the figure. This result can be proven most readily using the geometry of 
Fig. 3.20. The lengths ad and cf respectively represent the molar free ener-
gies of the α and β phases present in the alloy. Point g is obtained by the 
intersection of be and dc so that bcg and acd, as well as deg and dfc, form 

Fig. 3.19 (a) Molar free-energy curve for the α phase. (b) Molar free-energy 
curves for α and β. adapted from ref 3.1
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similar triangles. Therefore, bg/ad = bc/ac and ge/cf = ab/ac. According to 
the lever rule, 1 mol of alloy will contain bc/ac mol of α and ab/ac mol of 
β. It follows that bg and ge represent the separate contributions from the α 
and β phases to the total free energy of 1 mol of alloy. Therefore, the length 
be represents the molar free energy of the phase mixture.

Consider now alloy Xo in Fig. 3.21(a). If the atoms are arranged as a 
homogeneous phase, the free energy will be lowest as α; that is, G0α per 
mole. however, from the above it is clear that the system can lower its 
free energy if the atoms separate into two phases, with compositions α1 
and β1, for example. The free energy of the system will then be reduced 
to G1. Further reductions in free energy can be achieved if the A and B 
atoms interchange between the α and β phases until the compositions αe 
and βe are reached (Fig. 21b). The free energy of the system, Ge, is now 
a minimum and there is no desire for further change. Consequently, the 
system is in equilibrium and αe and βe are the equilibrium compositions 
of the α and β phases.

This result is quite general and applies to any alloy with an overall com-
position between αe and βe: only the relative amounts of the two phases 
change, as given by the lever rule. When the alloy composition lies outside 
this range, however, the minimum free energy lies on the Gα or Gβ curves 
and the equilibrium state of the alloy is a homogeneous single phase.

From Fig. 3.21 it can be seen that equilibrium between two phases 
requires that the tangents to each G curve at the equilibrium composi-
tions lie on a common line. In other words, each component must have 
the same chemical potential in the two phases, that is, for heterogeneous 
equilibrium:

Fig. 3.20 Molar free energy of a two-phase mixture (α + β). adapted from 
ref 3.1
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m m m mα β α β
A A B B= = and  (eq 3.49)

From eq 3.49 it can be seen that the activities of the components must 
also be equal; that is:

a a a aA A B B
α β α β= = and  (eq 3.50)

It is easiest to plot the variation of activity with alloy composition, and 
this is shown schematically in Fig. 3.22. Between A and αe and βe and B, 
where single phases are stable, the activities (or chemical potentials) vary, 
and, for simplicity, ideal solutions have been assumed, in which case there 
is a straight line relationship between αe and X. Between αe and βe the 
phase compositions in equilibrium do not change, and the activities are 
equal and given by points q and r.

3.6.2 Phase Diagrams

The previous section shows how the equilibrium state of an alloy can 
be obtained from the free-energy curves at a given temperature. The next 
step is to see how equilibrium is affected by temperature.

The shapes of liquidus, solidus, and solvus curves (or surfaces) in a 
phase diagram are determined by the Gibbs free energies of the relevant 
phases. In this instance, the free energy must include not only the energy 
of the constituent components, but also the energy of mixing of these 
components in the phase. Consider, for example, the situation of complete 
miscibility shown in Fig. 3.23. The two phases, liquid and solid, are in 
stable equilibrium in the two-phase field between the liquidus and solidus 
lines. The Gibbs free energies at various temperatures are calculated as a 
function of composition for ideal liquid solutions and for ideal solid solu-
tions of the two components, A and B. The result is a series of plots similar 
to those shown in Fig. 3.24(a) to (e):

Fig. 3.21 (a) alloy X0 has a free energy, G1, as a mixture of α and β. (b) at 
equilibrium, alloy X0 has a minimum free energy, Ge, when it is a 

mixture αe and βe. adapted from ref 3.1
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Fig. 3.22 the variation of aA and aB, with composition for a binary system 
containing two ideal solutions, α and β. adapted from ref 3.1

At temperature • T1, the liquid solution has the lower Gibbs free energy 
and, therefore, is the more stable phase.
At • T2, the melting temperature of A, the liquid and solid are equally 
stable only at a composition of pure A. The remainder of the solution 
is still liquid.
At temperature • T3, between the melting temperatures of A and B, the 
Gibbs free-energy curves cross. Depending on the composition, there 
exist fields of liquid, liquid + solid α, and solid α.
At temperature • T4, the melting temperature of B, pure B liquid and 
solid are equally stable. except for pure B, the remainder of the solu-
tion is now solid α.
At temperature • T5 and at all lower temperatures, the free-energy curve 
for solid α is below the curve for the liquid, and the whole solution is 
solid α.

Construction of the two-phase liquid-plus-solid field of the phase dia-
gram in Fig. 3.24(f) is as follows. According to thermodynamic principles, 
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the compositions of the two phases in equilibrium with each other at tem-
perature T3 can be determined by constructing a straight line that is tangent 
to both curves in Fig. 3.24(c). The points of tangency, 1 and 2, are then 
transferred to the phase diagram as points on the solidus and liquidus, 
respectively. This is repeated at sufficient temperatures to determine the 
curves accurately.

If, at some temperature, the Gibbs free-energy curves for the liquid and 
the solid tangentially touch at some point, the resulting phase diagram 
will be similar to those shown in Fig. 3.25(a) and (b), where a maximum 
or minimum appears in the liquidus and solidus curves.

The two-phase field in Fig. 3.24(f) consists of a mixture of liquid and 
solid phases. As stated previously, the compositions of the two phases in 
equilibrium at temperature T3 are C1 and C2. The horizontal isothermal 
line connecting points 1 and 2, where these compositions intersect tem-
perature T3, is the tie line. Similar tie lines connect the coexisting phases 
throughout all two-phase fields (areas) in binary systems, while tie tri-
angles connect the coexisting phases throughout all three-phase regions 
(volumes) in ternary systems.

Eutectic phase diagrams, a feature of which is a field where there is a 
mixture of two solid phases, can also be constructed from Gibbs free-
energy curves. Consider the temperatures indicated on the phase diagram 
in Fig. 3.26(f) and the Gibbs free-energy curves for these temperatures 
(Fig. 3.26a–e). When the points of tangency on the energy curves are trans-

Fig. 3.23 Schematic binary phase diagram showing miscibility in both the 
liquid and solid states. Source: ref 3.2
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Fig. 3.24 Use of Gibbs energy curves to construct a binary phase diagram that shows miscibility in both 
the liquid and solid states. Source: ref 3.3 as published in ref 3.2

Fig. 3.25 Schematic binary phase diagrams with solid-state miscibility where the liquidus shows (a) a 
maximum and (b) a minimum. Source: ref 3.2
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Fig. 3.26 Use of Gibbs energy curves to construct a binary phase diagram of the eutectic type. 
Source: ref 3.4 as published in ref 3.2
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ferred to the diagram, the typical shape of a eutectic system results. The 
mixture of solid α and β that forms on cooling through the eutectic (Point 
10 in Fig. 3.26f), has a special microstructure.

Binary phase diagrams that have three-phase reactions other than the 
eutectic reaction, as well as diagrams with multiple three-phase reactions, 
also can be constructed from appropriate Gibbs free-energy curves. Like-
wise, Gibbs free-energy surfaces and tangential planes can be used to 
construct ternary phase diagrams.
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