

Universidade Estadual de São Paulo Escola de Engenharia de Lorena

Transferência de potência e de oxigênio em sistemas agitados e aerados

Serão estudadas 4 situações envolvendo a transferência de potência:

- Agitação de líquidos Newtonianos
- Agitação de líquidos Newtonianos submetidos a aeração
- Agitação de líquidos não-Newtonianos
- Agitação de líquidos não-Newtonianos aerados
- Por fim, será abordada a Transferência de oxigênio

A agitação refere-se ao movimento induzido em um fluido por meios mecânicos em um recipiente. O fluido pode circular no recipiente ou apresentar outro padrão de fluxo.

A mistura está normalmente relacionada a duas ou mais fases inicialmente separadas que são aleatoriamente distribuídas dentro ou através uma da outra.

"... ao tratarmos de **agitação** iremos considerar uma única fase e nos processos de **mistura** consideraremos que os componentes se apresentam em duas ou mais fases..."

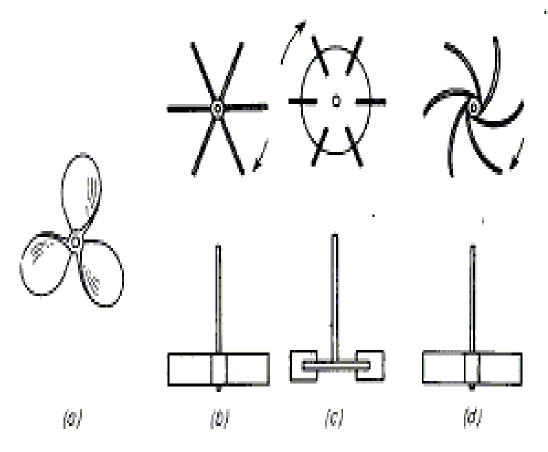
Nestes processos a mistura resultante podem ainda ser classificada como:

<u>Homogênea:</u> gás-gás, líquido-líquido (miscível); <u>Heterogênea:</u> sólido-líquido

Propriedades mais importantes dos materiais, que podem influenciar a facilidade da mistura para fluidos e sólidos...

Fluidos: viscosidade, massa específica, relação entre as massas específicas e miscibilidade.

<u>Sólidos:</u> finura, massa específica, relação entre as massas específicas, forma, aderência e molhabilidade.


1. Agitação de líquidos Newtonianos

A capacidade de uma turbina de transferir potência para um meio depende de vários fatores, como, por exemplo:

- °Tipo de impelidor
- ODiâmetro do impelidor
- °Frequência do agitador
- ODiâmetro do tanque
- Altura da coluna líquida
- OExistência ou não de chicanas e sua largura
- °Características do líquido (densidade e viscosidade).

Tipos: propulsores, pás e turbinas...

- (a) Propulsor marinho de três pás
- (b) turbina de pá fina aberta
- (c) turbina de disco
- (d) turbina vertical de pás curvas

Propulsores

Para líquidos muito viscosos, os mais usados são os propulsores tipo hélice e os agitadores âncora

Propulsor earinho)

Empregado quando se deseja correntes verticais intensas. Ex: manter sólidos em suspensão.

Fluxo axial;

Agitadores de alta velocidade para líquidos de baixa viscosidade;

Pequenos: 1150 ou 1750 rpm;

Grandes: 400 a 800 rpm.

Este tipo de agitador cisalha o líquido vigorosamente

Agitadores tipo Turbinas

Parecem algumas vezes agitadores de pás com lâminas curtas;

As lâminas podem ser: retas, curvadas, inclinadas ou verticais;

São eficazes para amplo intervalo de viscosidade;

Velocidades elevadas;

Produzem fluxos radiais e verticais;

Bons para mistura de líquidos com aproximadamente a mesma densidade relativa.

Impulsionam o fluido radialmente contra as paredes e ali a corrente se divide em duas, uma para baixo e outra para cima, e ambas retornam para o centro

Agitadores tipo Turbinas

São eficazes para amplo intervalo de viscosidade;

Velocidades elevadas;

Produzem fluxos radiais e verticais

Fluxo e velocidade em tanques agitados

O fluxo depende de fatores como:

Tipo de lâmina, agitador

Características do fluido

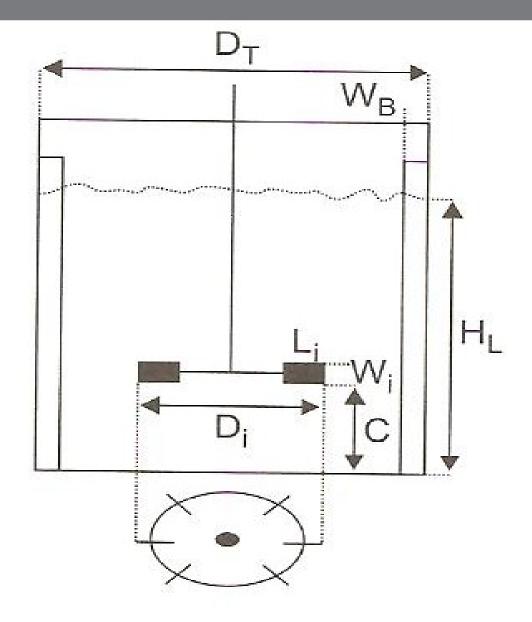
Tamanho e proporções do tanque

Existência de placas defletoras (chicanas) e agitadores.

A velocidade do fluido tem três componentes:

- 1. radial : correntes perpendiculares ao eixo do agitador
- 2. axial ou longitudinal : correntes paralelas ao eixo do agitador
- 3. tangencial ou rotacional : correntes tangentes ao eixo do agitador; responsável pela formação do vórtice.

Agitação


- Quando o <u>agitador está disposto no centro</u> a componente tangencial é prejudicial à mistura.
- O fluxo tangencial segue uma trajetória circular ao redor do eixo e cria vórtices no tanque de agitação.

PROBLEMAS...

- Estratificação permanente em vários níveis. Substâncias sem se misturar, sem fluxo longitudinal de um nível a outro.
- Se houver a presença de sólidos, estes poderão ser lançados à parede e descerem, acumulando-se embaixo do agitador.
- Ao invés de se obter mistura haverá concentração de sólidos.
- O vórtice pode ser tão grande que o agitador fica descoberto.
- Oscilação de massa flutuante.

Formas de evitar vórtices

- Em tanques pequenos, o agitador pode ficar descentralizado e/ou inclinado
- Em tanques largos, o agitador pode ser colocado na lateral horizontalmente
- Colocar defletores (chicanas) que impedem o escoamento rotacional...

Esquema de um tanque agitado por turbina de pás planas, com indicação de dimensões importantes na transmissão de potência ao líquido.

Consumo de potência

Para estimar a energia necessária utilizam-se correlações empíricas de potência com outras variáveis do sistema.

A forma destas correlações é encontrada através de análise dimensional.

A potência é função das seguintes variáveis... n, Di, μ, ρ, g.

Potência

Através da análise dimensional....

$$\frac{P}{n^3.D_a^5.\rho} = \psi \left(\frac{n.D_a^2.\rho}{\mu}, \frac{n^2.D_a}{g} \right)$$

Número de potência

$$N_P = \frac{P}{n^3 \cdot D_a^5 \cdot \rho}$$

Número de Reynolds

$$Re = \frac{n \cdot D_a^2 \cdot \rho}{\mu}$$

Número de Froude

$$F_r = \frac{n^2 \cdot D_a}{g}$$

Potência

$$N_{P} = \psi(N_{Re}, N_{Fr}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6})$$

Fatores de forma

$$S_1: \frac{D_a}{D_t} = 0.33$$
 $S_4: \frac{W}{D_a} = 0.2$ $S_2: \frac{C}{D_a} = 1$ $S_5: \frac{J}{D_t} = 0.083$ $S_3: \frac{L}{D_a} = 0.25$ $S_6: \frac{H}{D_t} = 1$

4 defletores

 $D_t = diâmetro interno do tanque$

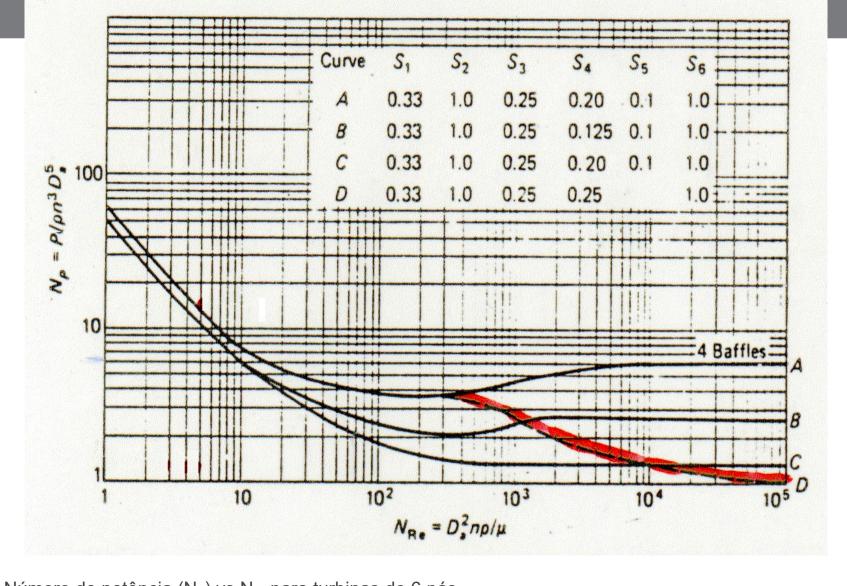
 $D_a = diâmetro do agitador$

H = nível do líquido

C = distância da lâmina ao fundo

J = largura do defletor

W = altura da lâmina


NP é proporcional a razão da força de arraste agindo sobre unidade de área do impulsor

O Número de Potência (N_P) é análogo ao coeficiente de arraste ou fator de fricção.

Número de Reynolds

Re <10 escoamento viscoso

Re > 104 escoamento turbulento

Número de potência (N_P) vs N_{Re} para turbinas de 6 pás. Na porção em vermelho da curva D, o valor de N_P lido na figura deve ser multiplicado pelo N_{Fr} Curvas: A (Verticais); B (Verticais); C (Inclinadas 45°); D (Verticais – sem chicanas) (McCabe, 1985).

Foi demonstrado (RUSHTON et al., 1950), por análise dimensional, que a potência transmitida está relacionada com as características do sistema da seguinte forma:

$$\frac{P}{N^3 D_i^5 \rho} = f\left(\frac{N D_i^2 \rho}{\mu}, \frac{N^2 D_i}{g}, \frac{H_L}{D_i}, \frac{D_T}{D_i}, \frac{W_B}{D_i}, \dots\right)$$

$$N_P = f\left(N_{Re}, N_{Fr}, \frac{H_L}{D_i}, \frac{D_T}{D_i}, \frac{W_B}{D_i}, \dots\right)$$

$$\frac{P}{N^{3}D_{i}^{5}\rho} = f\left(\frac{ND_{i}^{2}\rho}{\mu}, \frac{N^{2}D_{i}}{g}, \frac{H_{L}}{D_{i}}, \frac{D_{T}}{D_{i}}, \frac{W_{B}}{D_{i}}, \dots\right) \quad N_{P} = f\left(N_{Re}, N_{Fr}, \frac{H_{L}}{D_{i}}, \frac{D_{T}}{D_{i}}, \frac{W_{B}}{D_{i}}, \dots\right)$$

onde: $N_P = N$ úmero de potência $(=P/N^3 \mathbf{D}_i^5 \rho)$ (adimensional)

 $N_{\rm Re}$ = Número de Reynolds (=ND_i² ρ/μ) (adimensional)

 $N_{\rm Fr}$ = Número de Froude (= N^2D_i/g) (adimensional)

P = potência transmitida na agitação (W)

N = frequência de agitação (rps ou s⁻¹)

 ρ = densidade do líquido (kg/m³)

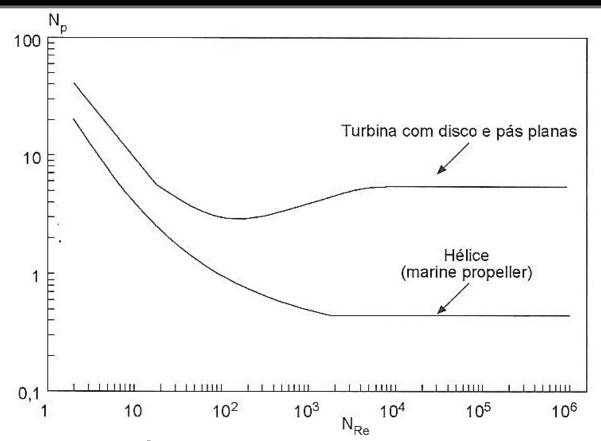
 μ = viscosidade do líquido (kg/m·s)

g = aceleração da gravidade (m/s²)

 D_i = diâmetro do impelidor (m)

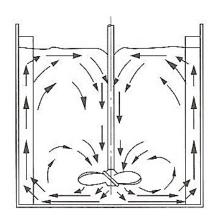
 $H_L/D_i,D_T/D_i,W_B/D_i,...$ = adimensionais ligados à geometria do reator

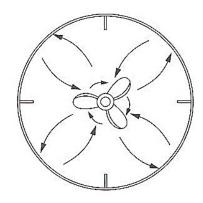
 H_L = altura da coluna de líquido (m)

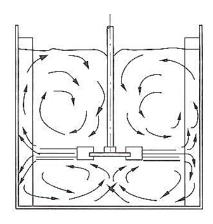

 D_T = diâmetro do tanque (m)

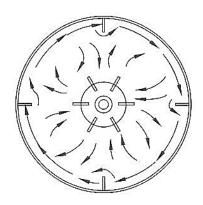
 $W_B = largura da chicana (m)$

C = distância do impelidor ao fundo do reator (m)


W_i = altura da pá da turbina (m)


RUSHTON et al. (1950) efetuaram determinações de potência para várias turbinas e em diferentes geometrias. No gráfico abaixo encontram-se dois dos principais resultados.


Número de potência em função do Número de Reynolds para impelidores tipo pás planas e tipo hélice.


As diferenças observadas devem-se às diferentes direções de escoamento do líquido provocadas pelas diferentes turbinas

Escoamento axial para turbinas tipo hélice em tanque com chicanas.

Escoamento radial para turbinas tipo disco e pás planas em tanque com chicanas.

Pelo gráfico observa-se a existência de três regiões:

- 1°) Laminar
- 2°) Transição
- 3°) Turbulenta.

Para o regime laminar tem-se:

$$N_P = K_1 (N_{Re})^{-1}$$
 \longrightarrow $P = K_1 N^2 D_i^3 \mu$

Para o regime turbulento tem-se:

$$N_P = K_2 = cte$$
. \longrightarrow $P = K_2 N^3 D_i^5 \rho$

Expressões que permitem obter a potência transmitida em líquidos Newtonianos apenas agitados.

Observações sobre o gráfico $Np = f(N_{Re})$ de Rushton:

- OA turbina de pás planas é mais eficiente para transmissão de potência.
- Os dados foram obtidos com uma turbina.
- OAs relações geométricas empregadas foram aquelas da tabela abaixo:

Tipo de turbina	$\mathbf{D}_{\mathrm{T}}/\mathbf{D}_{\mathrm{i}}$	H_L/D_i	C/D _i	L_i/D_i	W_i/D_i	W_B/D_T
Pás planas (6)	3	3	1	0,25	0,2	0,10
Hélice sistemes	3	3	1	diforantos d		0,10

Para sistemas com relações geométricas diferentes das usadas para a obtenção do gráfico, multiplica-se a potência por um fator de correção:

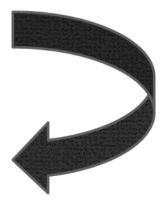
$$f_{c} = \sqrt{\frac{(D_{\underline{T}}/D_{\underline{i}})^{*}.(H_{\underline{L}}/D_{\underline{i}})^{*}}{(D_{\underline{T}}/D_{\underline{i}}).(H_{\underline{L}}/D_{\underline{i}})}}$$

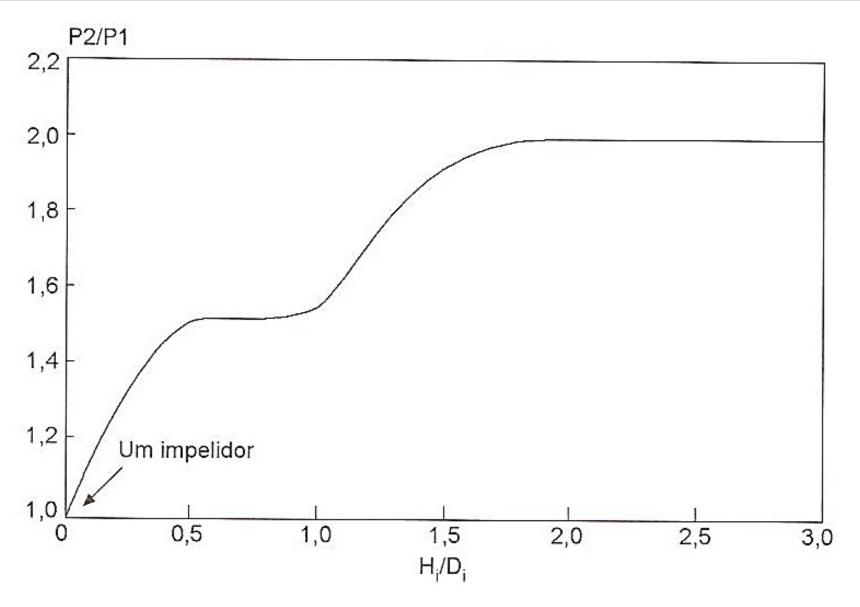
 $(D_T/D_i)^*$ e $(H_L/D_i)^*$ são as relações distintas das de RUSHTON. (D_T/D_i) e (H_L/D_i) são as relações geométricas de RUSHTON.

O Para o emprego de maior número de turbinas usam-se as relações:

$$D_i < H_i < 2.D_i$$
 e $(H_L/D_i) - 1 > n^o$ de turbinas $> (H_L/D_i) - 2$,

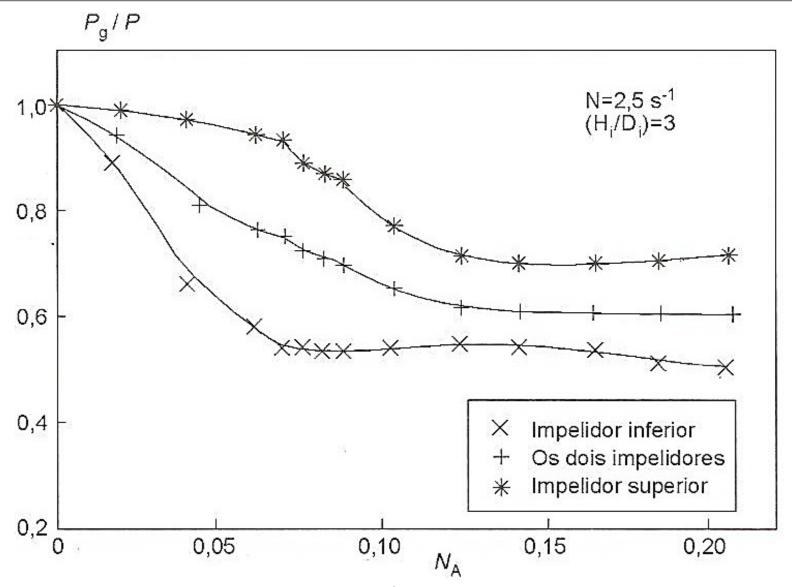
Onde:


H_i é a distância entre os impelidores (turbinas)


 Para duas ou mais turbinas, há uma distância mínima entre as mesmas para que se obtenha como resultado o somatório do efeito de cada uma.

Assim, HUDCOVA et al. encontraram $H_i > 1,8 \cdot D_i$

BATES et al. encontraram $H_i > 1,3 \cdot D_i$


Relação entre a potência transmitida por duas turbinas e a transferida por uma turbina (P_2/P_1) , em função da relação H_i/D_i , para turbinas de pás planas.

2. Agitação de líquidos Newtonianos submetidos a aeração

- Para fins de transferência de oxigênio há necessidade de se aerar o líquido submetido a agitação, o que provoca modificações sensíveis na potência transmitida.
- A presença de bolhas no líquido causa diminuição da sua densidade aparente, provocando redução da potência transmitida.
- $^{\circ}$ A abordagem do problema foi feita definindo-se um número adimensional, chamado Número de Aeração (N_{A}):

$$N_A = \frac{Q/D_i^2}{ND_i} = \frac{Q}{ND_i^3}$$

onde: N_A = Número de Aeração (adimensional) Q = vazão de ar (m³/s) ND_i = velocidade da extremidade do impelidor (m/s) Medindo-se os valores de potência transmitida para o meio, empregando-se as relações geométricas de RUSHTON, HUDCOVA et al. construíram um gráfico da relação entre a potência transmitida no sistema aerado e a potência sem aeração ($P_{\rm g}/P$) em função de NA.

 $P_{\rm g}/P$ em função de $N_{\rm A}$ (Q/N.D $_{\rm i}^3$) para sistema de agitação com duas turbinas de pás planas.

Com o número de aeração e a potência transmitida no meio submetido apenas a agitação, obtém-se a potência transmitida ao meio aerado:

$$\frac{Pg}{P} = X$$

Outra forma de se obter a potência transmitida para o meio aerado foi proposta por MICHEL e MILLER, a partir de seus resultados experimentais:

$$P_g \alpha \left(\frac{P^2 N D_i^3}{Q^{0,56}} \right)^{0,45}$$

A constante de proporcionalidade é função da geometria, e para esse caso, foi de 0,706.

$$P_g = 0.706 \left(\frac{P^2 N D_i^3}{Q^{0.56}}\right)^{0.45}$$

com: P_g e P em W $N \text{ em s}^{-1}$ $D_i \text{ em m}$ $Q \text{ em m}^3/\text{s}.$

- \circ A potência do motor deve ser igual a P_g mais a potência correspondente à perda no selo mecânico.
- Atenção ao se agitar o meio, em tanque cheio, quando este não estiver sendo aerado, pois neste caso a potência transmitida será \mathbf{P} e não \mathbf{P}_{g} .

Usar dobradiças em algumas lâminas das turbinas é uma alternativa para contornar o problema.

Caso seja possível um sistema com variação de frequência de agitação, usar uma frequência suficientemente baixa para não comprometer o motor.

Exercício 1

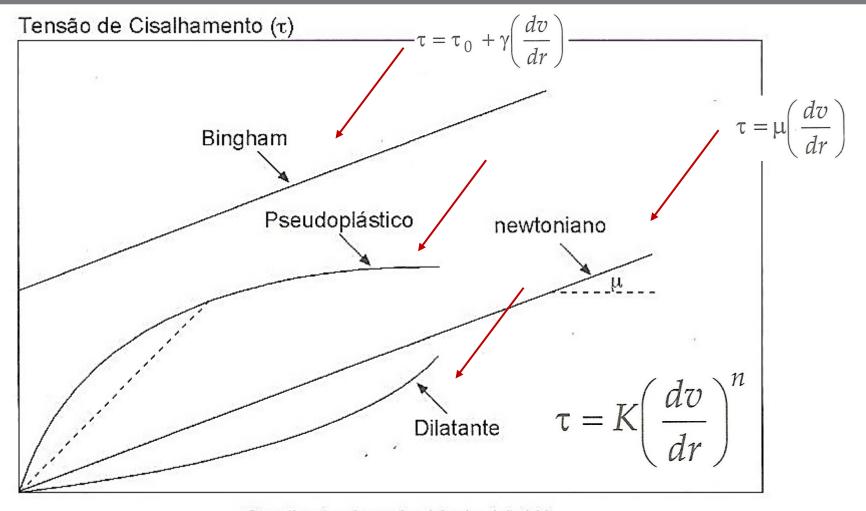
Um meio de fermentação (tipo Newtoniano) com viscosidade igual a 10-2 Pa.s e densidade igual a 1000 kg/m³ deverá ser agitado num biorreator provido de chicanas, usando-se uma turbina tipo hélice marinha de 1,3 m de diâmetro. As características geométricas do biorreator são: $D_T/D_i = 3$; $H_I/D_i = 3$. (a) Calcule a potência (em HP) necessária para agitar o meio com uma velocidade de 4 s⁻¹. (b) Com este sistema é possível realizar uma fermentação com células que não suportam uma velocidade da extremidade da turbina maior que 10 m/s? Comprove. Dado: 1 Pa.s = 1 kg/m.s.

Exercício 2

O cultivo de um microrganismo será realizado a 30 °C, num biorreator de 100 m³, com meio não aerado e com as características abaixo. Sabe-se que o sistema deve operar com fluxo turbulento e que a velocidade da extremidade da turbina não ode ultrapassar 6,3 m/s, devido a sensibilidade do microrganismo. Calcule a potência (em HP) máxima que pode ser transmitida ao meio quando se opera o sistema nas condições mencionadas.

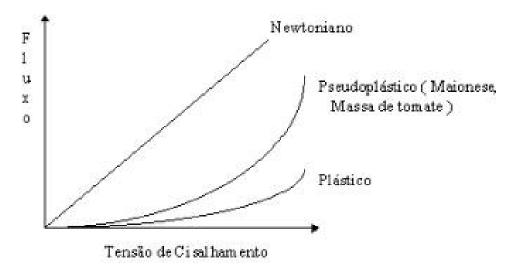
Biorreator: $D_T = 4.6 \text{ m}$ $D_i = 1.53 \text{ m}$ Turbina pá plana

Meio: $\rho = 10^3 \text{ kg/m}^3$ Fluido Newtoniano


3. Agitação de líquidos não-Newtonianos

O Durante uma fermentação é possível ocorrerem alterações significativas no meio, o qual pode passar à condição de não-Newtoniano.

• Esta situação é bem mais complexa e exige um tratamento especial.


 O mais comum é o meio passar a um comportamento pseudoplástico.

Há também o comportamento Binghamiano.

Gradiente de velocidade (dv/dr)

Tensão de cisalhamento (τ) em função do gradiente de velocidade (dv/dr), para líquido Newtoniano e para não-Newtonianos.

Para líquidos

$\tau = \mu \left(\frac{dv}{dr} \right)$

Newtonianos tem-se:

onde: τ = tensão de cisalhamento (kg/m.s², Pa)

μ = viscosidade do líquido (kg/m.s, Pa.s)

(dv/dr) = gradiente de velocidade na direção radial (s^{-1})

Para o líquido Binghamiano tem-se:

$$\tau = \tau_0 + \gamma \left(\frac{dv}{dr}\right)$$

onde: γ = coeficiente de rigidez (kg/m.s)

Para alguns fluidos

Não-Newtonianos

é comum se empregar:

$$\tau = K \left(\frac{dv}{dr}\right)^n$$

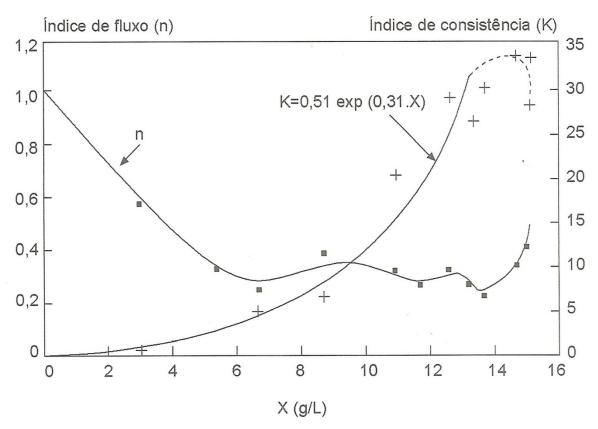
onde:
$$K =$$
indice de consistência (kg · m⁻¹ · sⁿ⁻² ou g · cm⁻¹ · sⁿ⁻²) $n =$ indice de comportamento do fluxo (adimensional)

0 < n < 1 → Pseudoplástico

Voltando ao pseudoplástico, traçando-se uma reta da origem até um ponto na curva, pode-se definir uma viscosidade aparente, que seria o coeficiente angular desta reta:

Tensão de Cisalhamento (r)

Tensão de Cisalhamento (τ) Bingham Pseudoplástico newtoniano Dilatante


Gradiente de velocidade (dv/dr)

Assim, tem-se: $\tau = \mu_{ap} \left(\frac{dv}{dr} \right)$ ou ainda $\mu_{ap} = K \left(\frac{dv}{dr} \right)^{n-1}$

onde: μ_{ap} = viscosidade aparente (kg/m·s)

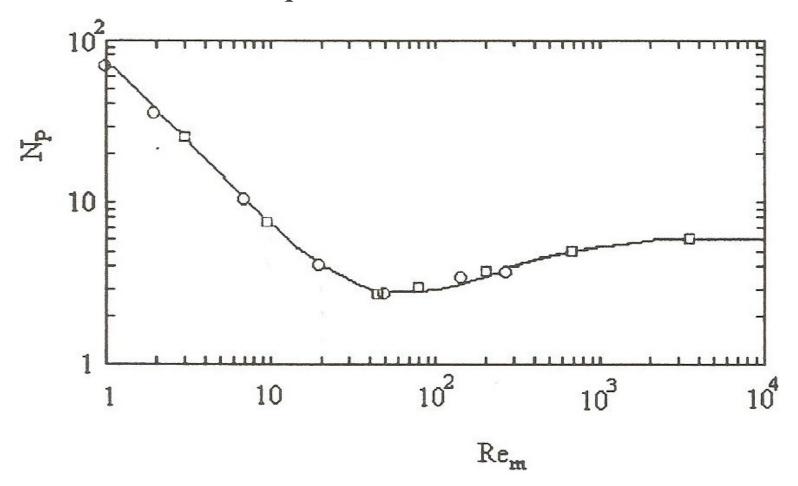
Com uma série de dados de experimentais de viscosidade aparente em função do gradiente de velocidade (obtidos para um líquido pseudoplástico com um viscosímetro) pode-se determinar os parâmetros K e n de acordo com a equação:

$$\log \mu_{ap} = \log K + (n-1)\log(dv/dr)$$

Figura 14.16 — Valores do índice de comportamento do fluxo (n, adimensional) e do índice de consistência (K, em g.cm⁻¹.sⁿ⁻²) em função da concentração celular (X), durante cultivo de Aspergillus awamori.

Dada a dificuldade de se definir um número de Reynolds que permita obter o número de potência pelo gráfico de Rushton, define-se um número de Reynolds modificado (N_{Rem}), que considera as mencionadas características do meio, ou seja, índice de consistência (K) e índice de comportamento do fluxo (n), e sua viscosidade aparente.

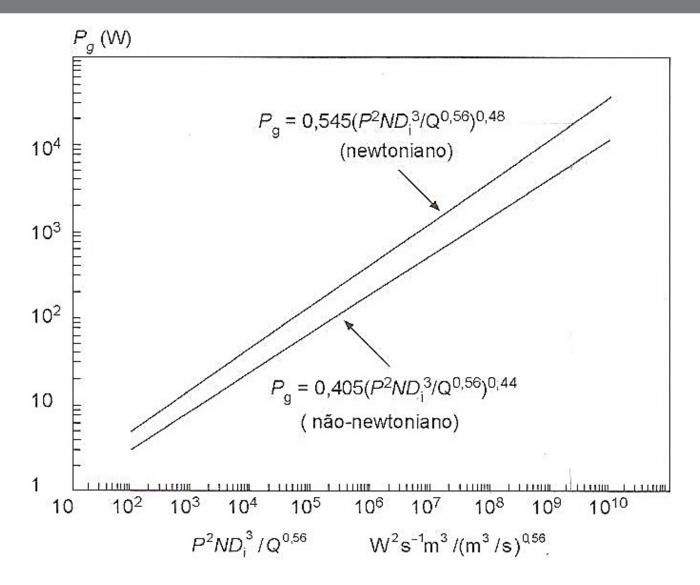
$$N_{\text{Re }m} = \frac{ND_i^2 \rho}{\mu_{ap}}$$


Calderbank; Moo-Young estudaram experimentalmente líquidos não-newtonianos, chegando à seguinte expressão de viscosidade aparente para um líquido pseudoplástico:

$$\mu_{ap} = \frac{K}{10N^{1-n}} \left(\frac{6n+2}{n}\right)^n$$

Chegando à seguinte forma para o número de Reynolds modificado:

$$N_{\text{Re }m} = \frac{D_i^2 N^{2-n} \rho}{0.1K} \left(\frac{n}{6n+2}\right)^n$$


A curva obtida tem semelhança com a de Rushton para líquido Newtoniano.

Número de potência em função do Número de Reynolds modificado, para líquido pseudoplástico e emprego de turbina tipo pás planas.

4. Agitação de líquidos não-Newtonianos aerados

- Neste caso, é de utilidade a equação proposta por MICHEL
 e MILLER, com diferentes valores das constantes
 empíricas.
- Para líquidos Newtonianos, a equação foi testada com dados experimentais provenientes de reatores de volumes de 3,5 até 42.000 litros, havendo, portanto, variação das relações geométricas e número de turbinas.
- Para líquidos não-Newtonianos, a equação foi testada com dados experimentais provenientes de reatores de volumes de 20 até 30.000 litros, havendo, também, variação das relações geométricas e número de turbinas.

Correlação do tipo proposta por MICHEL e MILLER, entre a potência transmitida sob aeração (P_g) e a grandeza $P^2.N.D_i^{\ 3}/Q^{0,56}$, para líquidos Newtonianos e não-Newtonianos (sistema de unidades SI).

5. Transferência de oxigênio

- A principal importância relativa ao estudo da transferência de potência reside no fato de que a agitação e a aeração devem permitir a transferência de oxigênio para o meio, de modo a atender à demanda das células.
- Assim, procura-se quantificar a influência da transferência de potência, assim como da aeração, sobre a capacidade de transferência de oxigênio do sistema de agitação e aeração, permitindo o dimensionamento deste.
- Um dos trabalhos clássicos, neste sentido, é o de COOPER et al., que estudaram a transferência de oxigênio em soluções de sulfito de sódio, quantificando-a na forma do coeficiente de absorção, K_v.

A correlação obtida foi:

$$K_V = K_3 \left(\frac{P_g}{V}\right)^{\alpha} (V_s)^{\beta}$$

onde:

 K_3 = constante que depende da geometria do sistema, assim como do sistema de unidades empregado.

V = volume de líquido submetido à agitação e aeração (m^3)

 $V_{\rm S}$ = velocidade superficial do ar (= Q/S) (m/s)

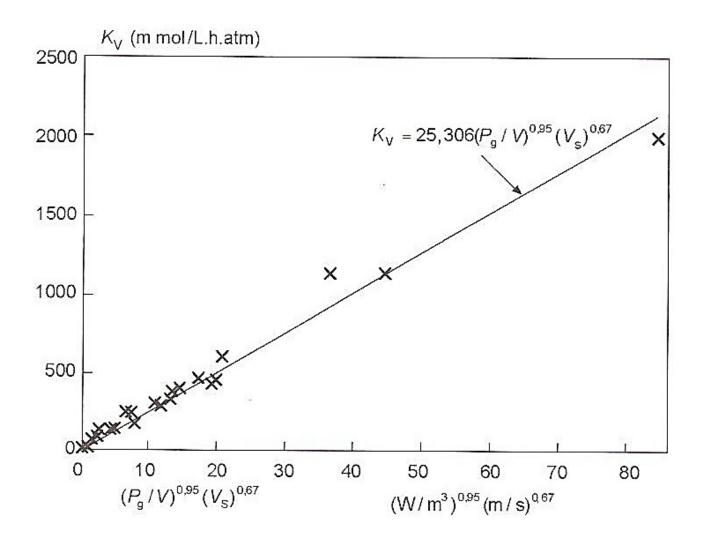
Q = vazão de ar (m³/s)

 $S = \pi D_T^2/4$

 α , β = constantes empíricas

Para os dados experimentais destes autores, a expressão obtida foi:

$$K_V = 25,306 \left(\frac{P_g}{V}\right)^{0.95} (V_S)^{0.67}$$


desde que: $K_{\rm V}$ em mmol $O_2/L \cdot h \cdot atm$

 $P_{\rm g}/V \, {\rm em} \, {\rm W/m}^3$

 $V_{\rm S}$ em m/s

 $(H_{\rm L}/D_{\rm T})=1$

Impelidor tipo disco ranhurado ("vaned disk")

Dados de transferência de oxigênio (K_v) para solução de sulfito de sódio, submetida a diferentes condições de agitação e aeração, com impelidor tipo disco ranhurado.

- \circ A ordem de grandeza dos coeficientes de $(P_{\rm g}/V)$ e $V_{\rm S}$ são de grande importância.
- Estes variam com as características do sistema* e do meio** e com a escala de trabalho.
- Outras interferências, como número de turbinas, frequência de agitação e coalescência, não são explicitadas na equação de Cooper.

Tabela 14.3 – Expoentes α e β da Eq. | 4.6 | segundo a escala de trabalho. 35

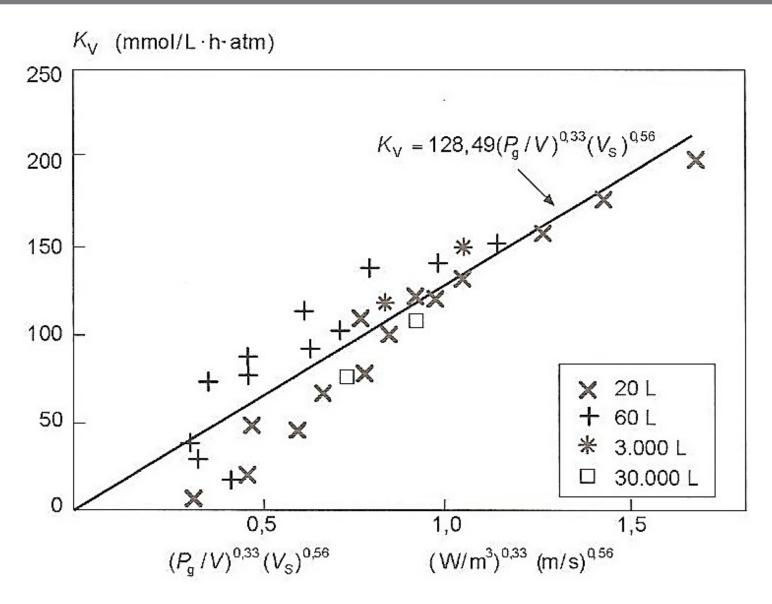
Volume do reator (m³)	α	β	Sistema
0,005	0,95	0,67	não coalescente
0,5	0,6 - 0,7	0,67	
50	0,4 - 0,5	0,50	
0,002 - 2,6	0,4	0,50	coalescente

Assim, outras correlações foram propostas:

$$K_V \alpha \left(\frac{P_g}{V}\right)^{0,4} (V_S)^{0,5} (N)^{0,5}$$

$$K_V = (p + qN_i) \left(\frac{P_g}{V}\right)^{0.77} (V_S)^{0.67}$$

onde: N_i = número de turbinas no eixo de agitação p, q = constantes empíricas

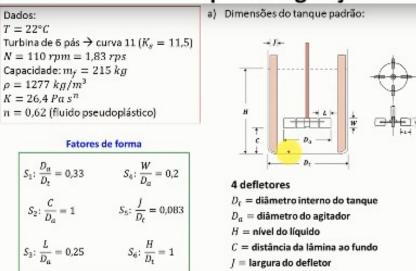

Obs.: Correlações obtidas para solução de sulfito de sódio.

Para meios fermentados, pode-se citar o trabalho de TAGUSHI et al., para o cultivo de *Endomyces*, cujo meio torna-se pseudoplástico ao longo do processo.

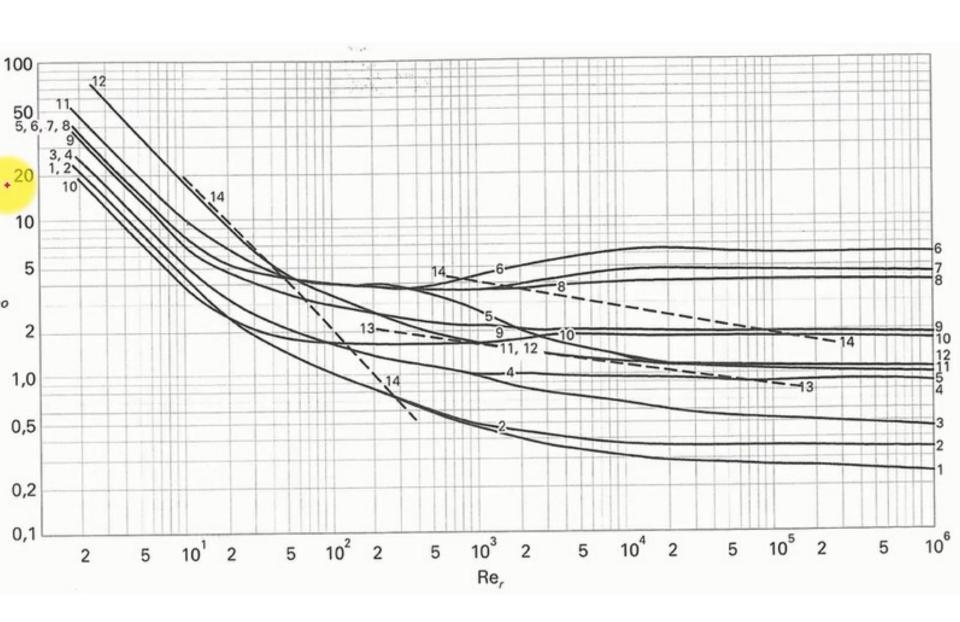
Neste caso, uma correlação do tipo da equação de COOPER foi adequada:

$$K_V = 128,49 \left(\frac{P_g}{V}\right)^{0.33} (V_S)^{0.56}$$

onde:
$$(Pg/V)$$
 em W/m^3
 (V_s) em m/s
 (K_v) em $mmolO_2/L \cdot h \cdot atm$


Dados de transferência de oxigênio (K_v) em líquidos pseudoplásticos (cultivo de *Endomyces*), obtidos em reatores de 20 a 30.000 litros.

EXERCÍCIO 3


Em uma indústria de geleias, suco de amora concentrado ($58^{\circ}Brix$) deve ser mantido, sob agitação, a $22^{\circ}C$. O tanque de agitação é equipado com um agitador do tipo turbina, com seis pás retas, correspondente ao impulsor 11 da figura a seguir ($K_s = 11,5$). A frequência rotacional do impulsor é de 110~rpm e capacidade do tanque deve ser adequada para armazenar 215~kg de suco. Nas condições de agitação, o suco apresenta as seguintes propriedades: $\rho = 1277~kg/m^3$; $K = 26,4~Pa~s^n$; n = 0,62. Determine:

 a) As dimensões do tanque, considerando as dimensões padrão com defletores

b) A potência necessária para a agitação

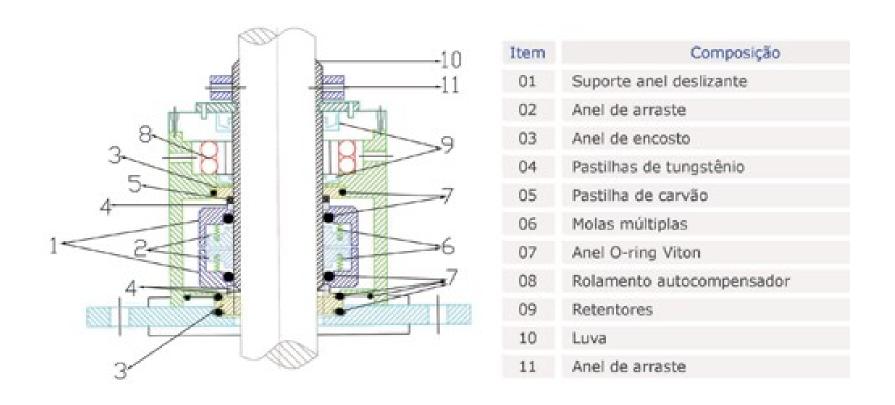
W = altura da lâmina

EXERCÍCIO 4 Um cultivo de um microrganismo será realizado, a 30 °C, num biorreator aerado com as características apresentadas abaixo. Sabe-se que o sistema deve operar com fluxo turbulento e que a velocidade da extremidade da turbina não pode ultrapassar 9,45 m/s. (a) Calcule a potência (em HP) necessária para operar o sistema. (b) calcule a potência necessária para agitar o meio sem aeração.

Características: $D_T = 3 \text{ m}$ $D_{i} = 1 \text{ m}$ $H_{I} = 3 \text{ m}$

Turbina tipo pás planas

Aeração = 0,6 vvm $k_{1} a = 100 h^{-1}$ **Dados:**


Fluido Newtoniano não coalescente

EXERCÍCIO 5

Uma fermentação será realizada (a 25 °C) num biorreator aerado, com as características apresentadas abaixo. Sabe-se que o meio é um fluido Newtoniano não coalescente. Calcule o coeficiente volumétrico de transferência de oxigênio resultante desta configuração/operação do sistema.

Características: $D_T = 2.4 \text{ m}$ $D_i = 0.8 \text{ m}$ $H_L = 2.4 \text{ m}$ Turbina tipo pás planas

Dados: $\rho = 10^3 \text{ kg/m}^3$ $\mu = 10^{-2} \text{ kg/m.s}$ aeração = 0,4 vvm N = 180 rpm

Desenho de um selo mecânico com a relação dos seus componentes.

Foto de um tipo de selo mecânico.

