UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA

ANDERSON ESTEVEZ OMENA

Análise da Relação Custo e Produtividade e da Eficiência Térmica Global do Processo de Secagem de Fluoreto de Amônio por *Spray Dryer*

> Lorena – SP 2007

ANDERSON ESTEVEZ OMENA

Análise da Relação Custo e Produtividade e da Eficiência Térmica Global do Processo de Secagem de Fluoreto de Amônio por *Spray Dryer*

Dissertação apresentada à Escola de Engenharia de Lorena da Universidade de São Paulo para a obtenção do título de Mestre em Engenharia Química.

Área de Concentração: Novos Materiais e Química Fina Orientador: Prof. Dr. Luiz Carlos de Queiroz AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

> Catalogação na Publicação Biblioteca Universitária Escola de Engenharia de Lorena da Universidade de São Paulo

Omena, Anderson Estevez

Análise da Relação Custo e Produtividade e da Eficiência Térmica Global do Processo de Secagem de Fluoreto de Amônio por *Spray Dryer /* Anderson Estevez Omena ; orientador Luiz Carlos de Queiroz.-- 2007 170 f: fig.

Dissertação (Mestrado – Programa de Pós-Graduação em Engenharia Química. Área de Concentração: Novos Materiais e Química Fina) – Escola de Engenharia de Lorena da Universidade de São Paulo.

1. Secagem industrial 2. *Spray Dryer* 3. Fluoreto de amônio 4. Modelos matemáticos em engenharia química. I. Título.

66.047 - CDU

DEDICATÓRIAS

Ao meu pai, Fernando, à minha mãe, Corita, e aos irmãos, Alexandre e Patrícia, dedico pela compreensão e pelo incansável apoio que recebi ao longo do período de elaboração deste trabalho.

AGRADECIMENTOS

Ao Prof. Dr. Luiz Carlos de Queiroz, que nos anos de convivência, muito me ensinou, contribuindo para meu desenvolvimento científico e intelectual.

Aos meus eternos professores Alexandre Tôrres, Elaine Tôrres, Sérgio Corrêa, Eduardo Bessa e César Pereira, que desde a época da minha graduação, sempre me apoiaram a trilhar no campo científico.

À Escola de Engenharia de Lorena – Universidade de São Paulo (EEL – USP), pela oportunidade de realização do curso de mestrado.

À empresa Indústrias Nucleares do Brasil (INB), por ter me colocado a disposição, todos os recursos necessários para o desenvolvimento deste trabalho.

À empresa Companhia Vale do Rio Doce (CVRD), pela compreensão e confiança durante a fase final de elaboração deste trabalho.

Aos amigos que torceram pelo meu êxito...

Muito obrigado!!!

"Conhecimento é o único recurso econômico que faz sentido."

Peter Drucker

"O rio atinge seus objetivos porque aprendeu a contornar os obstáculos."

Lao Tse

RESUMO

OMENA, A. E. Análise da Relação Custo e Produtividade e da Eficiência Térmica Global do Processo de Secagem de Fluoreto de Amônio por Spray Dryer. 2007. 170f. Dissertação (Mestrado em Engenharia Química) – Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena – SP, 2007.

No presente trabalho foram estudados e avaliados os parâmetros de operação que influenciam no processo de secagem de uma solução de fluoreto de amônio por spray dryer. Também foram obtidos os modelos matemáticos que descrevem a operação da planta de secagem de fluoreto de amônio, a partir dos dados de entrada previamente coletados de uma planta industrial existente. O spray dryer utilizado foi o de escala industrial da empresa Indústrias Nucleares do Brasil (INB), com 3,5 m de diâmetro e 3,0 m de altura (parte cilíndrica), empregando-se atomizador centrífugo de disco rotativo. Os parâmetros controlados na operação do spray dryer, foram a temperatura de entrada e saída do ar no equipamento de secagem, a partir de ajustes nas vazões de alimentação de gás liquefeito de petróleo (GLP) e da solução aquosa de fluoreto de amônio. Foram selecionados como variáveis objetivo, a vazão mássica de pó cristalizado produzido, o consumo de GLP e a eficiência térmica global do processo. Foram discutidos os resultados, identificando as melhores condições operacionais do secador, de forma a minimizar custos com insumos (combustível) e maximizar a produção. Foram elaboradas simulações de operação do spray dryer no "software Excel". Futuramente, estes simuladores poderão ser também inseridos no ensino de modelagem e simulação de processos e/ou do processo de secagem, dentro das disciplinas pertinentes, como por exemplo de Termodinâmica e Operações Unitárias, nos cursos de graduação de Engenharia Química e de Produção. A análise e modelagem do processo de secagem são de suma importância para as indústrias que o utilizam em seus processos produtivos, de modo que elas possam ajustar e controlar os parâmetros que realmente influenciam no processo, obtendo produtos com maior taxa de produção, com a qualidade desejada e com menor custo de produção.

Palavras-chave: Secagem. Spray dryer. Fluoreto de amônio. Modelo matemático.

ABSTRACT

OMENA, A. E. Analysis of Cost and Productivity Ratio and Global Thermal Efficiency of the Drying Process of Ammonium Fluoride for Spray Dryer. 2007. 170f. Dissertation (Master of Science in Chemical Engineering) – Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena – SP, 2007.

At the present paper the operation parameters that have an influence in the drying process of an ammonium fluoride solution for spray dryer were studied and evaluated. The mathematical models that conduct the operation of the ammonium fluoride drying plant were also obtained from the entrance data collected from an existing industrial plant. The spray dryer used was one of industrial scale of Indústrias Nucleares do Brasil company (INB), with 3,5 m of diameter and 3,0 height m (cylindrical part), using centrifugal rotating record atomizer. The controlled parameters at the spray dryer operation have been the feeding air temperature and the outflow air temperature, obtained through adjustments in the feeding flows of liquefied petroleum gas (LGP) and ammonium fluoride solution. The powder mass outflow, the consumption of LGP and the thermal global efficiency were selected as objective variables. The results were discussed, identifying the best dryer operational conditions, in order to minimize costs with fuel and to maximize the production. For this reason, simulations of spray-dryer operation in Excel were elaborated. In the future, these simulators could also be inserted in the teaching of modeling and process simulation and/or drying process, disciplines such as Thermodynamics and Unit Operations, and in the courses of Chemical and Production Engineering courses. The analysis and modeling of drying process are extremely important for the industries that use it in its productive processes, so they could adjust and control the parameters that really have an influence in the process, getting products with greatest production quantities, with desired qualities and cheaper production costs.

Keywords: Drying. Spray dryer. Ammonium fluoride. Mathematical model.

LISTA DE FIGURAS

Figura 1 – Secagem por convecção	28
Figura 2 – Etapas envolvidas na secagem em spray dryer	29
Figura 3 – Etapas em diagrama de blocos da secagem por spray dryer	30
Figura 4 – Conjunto atomizador a disco centrífugo, com um disco atomizador na forma de um prato invertido	32
Figura 5 – Discos atomizadores próprios para diversas aplicações	33
Figura 6 – Bico de pressão a um só fluido	33
Figura 7 – Contato ar-atomizado	35
Figura 8 – Os períodos da secagem – teor de umidade x tempo	37
Figura 9 – Os períodos da secagem – taxa de secagem x teor de umidade	37
Figura 10 – Os períodos da secagem – velocidade de secagem x tempo	37
Figura 11 – Sistemas de recuperação de produto	38
Figura 12 – Esquema de uma planta de atomização	39
Figura 13 – Representação da isoterma de adsorção	49
Figura 14 – Variação da umidade de equilíbrio com a umidade relativa do ar	50
Figura 15 – Esquema do atomizador empregado na planta de secagem	60
Figura 16 – Esquema do <i>spray dryer</i> empregado na secagem	61
Figura 17 – Esquema do spray dryer para o balanço de massa	70
Figura 18 – Esquema do spray dryer para o balanço de energia	71
Figura 19 – Capacidade evaporativa em função da diferença de temperatura do gás de secagem, a partir dos dados gerais do fabricante	78
Figura 20 – Taxa de consumo de combustível em função da temperatura de entrada do gás de secagem (TE _{AR}), a partir dos dados gerais do fabricante	78

Figura 21 – Taxa de consumo de GLP em função da temperatura de entrada do gás de secagem (TE_{AR}), a partir dos dados gerais do fabricante	80
Figura 22 – Custo de GLP em função da temperatura de entrada do gás de secagem (TE_{AR}), a partir dos dados gerais do fabricante	80
Figura 23 – Eficiência térmica global em função do consumo de GLP, a partir dos dados gerais do fabricante	82
Figura 24 – Taxa de consumo de GLP em função da temperatura de entrada de ar quente (TE _{AR}), a partir da determinação do estado termodinâmico do ar de entrada na câmara de secagem, a partir de dados coletados na planta	86
Figura 25 – Custo de GLP em função da temperatura de entrada de ar quente (TE_{AR}) , a partir da determinação do estado termodinâmico do ar de entrada na câmara de secagem, a partir de dados coletados na planta	86
Figura 26 – Comparação entre as curvas da taxa de consumo de GLP em função da temperatura de entrada de ar quente (TE_{AR})	87
Figura 27 – Capacidade evaporativa do <i>spray dryer</i> em função de ΔT , a partir de dados reais da planta de secagem	91
Figura 28 – Capacidade evaporativa do <i>spray dryer</i> em função de ΔT , a partir de dados fornecidos pelo fabricante e de dados reais da planta de secagem	91
Figura 29 – Vazão mássica de alimentação da solução aquosa de fluoreto de amônio em função do percentual de freqüência do motor da bomba, obtida a partir da curva de trabalho da bomba fornecida pelo fabricante	93
Figura 30 – Curva do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH ₄ F em função da temperatura de saída de ar úmido, obtida a partir de dados reais de operação manual do <i>spray dryer</i>	109
Figura 31 – Eficiência térmica global (%) em função da temperatura de saída de ar úmido empregado (°C)	111
Figura 32 – Eficiência térmica global do spray dryer (%) em função da taxa de consumo de GLP (em kg/h)	112
Figura 33 – Taxa de consumo de GLP (kg/h) em função da temperatura de saída de ar úmido empregado (°C)	113

Figura 34 – Taxa de produção de pó de NH ₄ F / NH ₄ HF ₂ (kg/h) em função da	
temperatura de saída de ar úmido empregado (°C)	113
Figura 35 – Razão entre o custo de GLP e a massa de pó produzido (R \$/kg)	
em função da temperatura de saída de ar úmido empregado ($^{\circ}C$)	115

LISTA DE TABELAS

Tabela 1 – Escolha do sistema de atomização	35
Tabela 2 – Relação entre padrão de tamanho de gotículas e variáveis de operação para atomizadores centrífugos	54
Tabela 3 – Especificação da solução aquosa de fluoreto de amônio	63
Tabela 4 – Especificação do fluoreto/bifluoreto de amônio cristalizado	66
Tabela 5 – Parâmetros iniciais de entrada	76
Tabela 6 – Especificações técnicas do spray dryer fornecidas pelo fabricante	77
Tabela 7 – Especificações sobre o consumo e o custo de GLP para a operação do <i>spray dryer</i> , a partir dos dados do fabricante	79
Tabela 8 – Especificações sobre a eficiência térmica global para o <i>spray dryer</i> , a partir dos dados do fabricante	81
Tabela 9 – Determinação da taxa de consumo e do custo de GLP a partir da determinação do estado termodinâmico para a corrente de ar quente que sai do aquecedor de ar, a partir de dados coletados na planta	85
Tabela 10 – Dados de entrada para o cálculo da capacidade evaporativa do <i>spray dryer</i>	89
Tabela 11 – Umidade absoluta da mistura gasosa na saída do secador e taxa de água vaporizada calculadas para vários valores de ΔT	90
Tabela 12 – Média do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma determinada temperatura de saída de ar (TS_{AR})	95
Tabela 13 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 87 °C	96

Tabela 14 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 88 °C	96
Tabela 15 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 89 °C	97
Tabela 16 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 90 °C	97
Tabela 17 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 91 °C	98
Tabela 18 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 92 °C	99
Tabela 19 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 93 °C	100
Tabela 20 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 94 °C	101
Tabela 21 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 95 °C	102
Tabela 22 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 96 °C	103
Tabela 23 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 97 °C	104
Tabela 24 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 98 °C	105

Tabela 25 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 99 °C	106
Tabela 26 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 100 °C	107
Tabela 27 – Média do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma determinada temperatura de saída de ar (TS_{AR}), após a análise do tamanho mínimo de amostra	108
Tabela 28 – Resultados obtidos nas simulações de secagem por <i>spray dryer</i> para cada valor de temperatura de saída de ar úmido empregado	111
Tabela 29 – Razão entre o custo de GLP e a massa de pó produzido para cada valor de temperatura de saída de ar úmido empregado nas simulações	114

LISTA DE ABREVIATURAS E SIGLAS

- ANP Agência Nacional de Petróleo
- CVRD Companhia Vale do Rio Doce
 - EEL Escola de Engenharia de Lorena
 - FAT Faculdade de Tecnologia de Resende
 - FCN Fábrica de Combustível Nuclear
 - GLP Gás Liquefeito de Petróleo
 - INB Indústrias Nucleares do Brasil
- PEAD Polietileno de Alta Densidade
- PWR *Power Water Reactor* (reator nuclear de água leve)
- RFAS Relatório Final de Análise de Segurança
- TCAU Tricarbonato de Amônio Uranila
- UERJ Universidade do Estado do Rio de Janeiro
- USP Universidade de São Paulo

LISTA DE SÍMBOLOS

Q	Calor
$M_{\rm V}$	massa de líquido removida (vaporizada) do produto
$M_{\rm U}$	material úmido
$dw/d\theta$	velocidade de secagem
θ	tempo de secagem
W, X	teor de umidade
Т	temperatura; temperatura de bulbo seco
M^{V}	peso molecular do vapor
\mathbf{M}^{G}	peso molecular do gás
Р	pressão total
$\mathbf{P}^{\mathbf{V}}$	pressão parcial do vapor
X ^{sat}	umidade de saturação
P ^{sat}	pressão do vapor saturado
X^P	saturação relativa
Vu	volume úmido
M^m	peso molecular da mistura gás-vapor
y^{V}	fração mássica de vapor
$ ho^m$	densidade do ar úmido
R	constante dos gases perfeitos
X^{R}	umidade relativa
\mathbf{T}^{D}	temperatura de ponto de orvalho

- h entalpia da mistura gás-vapor
- c^G calor específico do gás
- c^V calor específico do vapor
- λ_o calor latente do vapor
- T_o temperatura de referência; temperatura ambiente
- s calor específico úmido
- q calor por unidade de área
- ht coeficiente global de transmissão de calor
- T^W temperatura de bulbo úmido
- N razão de transmissão de massa por unidade de área
- K_G coeficiente de transmissão de massa
- P^W pressão de vapor saturado a T^W
- τ conteúdo de umidade
- τ^E umidade de equilíbrio
- D diâmetro da gotícula
- v_R velocidade de rotação do disco centrífugo do atomizador
- F vazão mássica de alimentação da solução aquosa de NH₄F
- *ω* viscosidade da alimentação
- σ tensão superficial da gotícula
- ρ_F densidade da alimentação
- ϕ diâmetro do disco centrífugo
- TE_{AR} temperatura do ar quente, alimentado no *spray dryer*
- TS_{AR} temperatura do ar úmido que sai do *spray dryer*

X _o ^R	umidade re	elativa	ambiente
~			

F vazão mássica de alimentação da solução aquosa de NH₄F

- M_{EAR} vazão mássica de ar quente (gás de secagem)
- M_{SAR} vazão mássica de ar úmido
 - M_N vazão mássica de NH₄F / NH₄HF₂ / NH₃ que saem na corrente do ar úmido
 - S_{PÓ} vazão mássica de pó de NH₄F / NH4HF₂ que sai pelo *underflow* do ciclone
- Y_{NH4F} fração mássica de soluto na alimentação
 - Y_{PÓ} fração mássica total de sais de fluoreto (NH₄F e NH₄HF₂) no pó produzido
 - Y_N fração mássica de soluto no vapor produzido
- XE_{AR} umidade absoluta no ar quente, alimentado no *spray dryer*
- h_{EAR} entalpia na corrente de ar quente, alimentado no *spray dryer*
- TE_{NH4F} temperatura da solução alimentada de NH₄F
 - XS_{AR} umidade absoluta no ar úmido que sai do *spray dryer*
 - h_{SAR} entalpia na corrente de ar úmido, que sai do *spray dryer*
 - c^L calor específico do líquido
 - s_{EAR} calor específico úmido da corrente de entrada do ar quente
 - λ_{SAR} calor latente na temperatura TS_{AR}
 - T^S temperatura de saturação adiabática
 - X^S umidade de saturação adiabática
 - λ^{S} calor latente na temperatura T^{S}
- $\eta_{Tglobal}$ eficiência térmica global
- η_{Tevap} eficiência evaporativa
 - F_B percentual de freqüência do motor da bomba de NH₄F
- Q_{GLP} poder calorífico do GLP

- $C_{GLP} \qquad \text{custo do } GLP$
 - h_o entalpia do ar ambiente
 - ΔT gradiente de temperatura entre as temperaturas de entrada e saída de ar no *spray dryer*
- V_{AR} Vazão volumétrica do ar
 - Tv Ponto de probabilidade da distribuição de Student para "v" graus de liberdade
 - μ Média

SUMÁRIO

1 INTRODUÇÃO	25
1.1 OBJETIVOS	25
1.2 JUSTIFICATIVA	26
1.3 AUTORIZAÇÃO DA INDÚSTRIA	26
2 REVISÃO BIBLIOGRÁFICA	27
2.1 PROCESSO DE SECAGEM	27
2.1.1 PROCESSO DE SECAGEM TÉRMICA	27
2.1.2 PROCESSO DE SECAGEM TÉRMICA POR CONVECÇÃO	28
2.1.3 PROCESSO DE SECAGEM POR ATOMIZAÇÃO	28
2.1.4 ETAPAS DO PROCESSO	31
2.1.4.1 ATOMIZAÇÃO DA SOLUÇÃO ALIMENTADA	31
2.1.4.1.1 ATOMIZADORES ROTATÓRIOS	32
2.1.4.1.2 BICOS DE PRESSÃO	33
2.1.4.2 CONTATO AR – ATOMIZADO	34
2.1.4.3 SECAGEM DO ATOMIZADO	36
2.1.4.4 SEPARAÇÃO DO PRODUTO SECO DO AR	38
2.2 TERMINOLOGIA RELATIVA À FORMA DO FLUORETO DE AMÔNIO	39
2.2.1 GOTAS	39
2.2.2 PARTÍCULAS	40

2.2.3 AGLOMERADO	40
2.2.4 TAMANHO	40
2.2.5 FORMA DA PARTÍCULA	40
2.2.6 DISTRIBUIÇÃO GRANULOMÉTRICA	41
2.3 PROPRIEDADES DO AR ÚMIDO	41
2.3.1 TEMPERATURA DE BULBO SECO (T)	41
2.3.2 TEOR DE UMIDADE OU UMIDADE ABSOLUTA (X)	41
2.3.3 UMIDADE DE SATURAÇÃO (X ^{sat})	42
2.3.4 SATURAÇÃO RELATIVA OU UMIDADE PERCENTUAL (X ^P)	42
2.3.5 VOLUME ÚMIDO (Vu)	43
2.3.6 DENSIDADE DO AR ÚMIDO (ρ ^m)	43
2.3.7 UMIDADE RELATIVA (X ^R)	44
2.3.8 TEMPERATURA DE PONTO DE ORVALHO (T ^D)	44
2.3.9 ENTALPIA DE UMA MISTURA AR - VAPOR (h)	45
2.3.10 CALOR ESPECÍFICO ÚMIDO (s)	45
2.3.11 TEMPERATURA DE BULBO ÚMIDO (T ^W)	46
2.4 PROPRIEDADES DOS SÓLIDOS ÚMIDOS	47
2.4.1 CONTEÚDO DE UMIDADE (τ)	47
2.4.2 UMIDADE DE EQUILÍBRIO (τ^{E})	48
2.4.3 UMIDADE LIVRE	48

2.4.4 UMIDADE LIGADA	48
2.4.5 UMIDADE NÃO LIGADA	48
2.4.6 ISOTERMAS DE ADSORÇÃO	49
2.4.7 SÓLIDOS INSOLÚVEIS HIGROSCÓPICOS	50
2.4.8 SÓLIDOS SOLÚVEIS HIGROSCÓPICOS	51
2.5 VANTAGENS DO SPRAY DRYER	51
2.6 PARÂMETROS QUE INFLUENCIAM O PROCESSO	52
2.7 ABORDAGENS NA LITERATURA SOBRE MODELAGEM DA SECAGEM POR ATOMIZAÇÃO	55
3 DESCRIÇÃO DO PROCESSO	59
3.1 O EQUIPAMENTO UTILIZADO	59
3.2 ALIMENTAÇÕES DO PROCESSO	62
3.2.1 FLUORETO DE AMÔNIO	62
3.2.2 GÁS LIQUEFEITO DE PETRÓLEO (GLP)	64
3.2.3 AR AMBIENTE	64
3.3 PRODUTOS DA SECAGEM	65
3.4 CONTROLE DO PROCESSO	66
3.5 BALANÇO DE MASSA	69
3.6 BALANÇO DE ENERGIA	71
3.6.1 CAPACIDADE EVAPORATIVA	73
3.6.2 EFICIÊNCIA TÉRMICA	73

3.6.2.1 EFICIÊNCIA TÉRMICA GLOBAL	74
3.6.2.2 EFICIÊNCIA EVAPORATIVA	74
4 PARÂMETROS INICIAIS	76
5 RESULTADOS E DISCUSSÃO	77
5.1 DETERMINAÇÃO DAS EQUAÇÕES PARA A TAXA DE EVAPORAÇÃO DA ÁGUA, CONSUMO DE GLP E EFICIÊNCIA TÉRMICA, A PARTIR DOS DADOS FORNECIDOS PELO FABRICANTE DO EQUIPAMENTO	77
5.2 DETERMINAÇÃO DA EQUAÇÃO DE CONSUMO DE GLP, A PARTIR DE DADOS COLETADOS NA PLANTA	83
5.3 DETERMINAÇÃO DA CAPACIDADE EVAPORATIVA DO <i>SPRAY</i> <i>DRYER</i> , A PARTIR DE DADOS COLETADOS NA PLANTA	88
5.4 EQUAÇÃO DE CONVERSÃO DO PERCENTUAL DA FREQÜÊNCIA DE ROTAÇÃO DO MOTOR DA BOMBA DE ALIMENTAÇÃO DA SOLUÇÃO AQUOSA DE FLUORETO DE AMÔNIO EM VAZÃO MÁSSICA	92
5.5 MODELO PROPOSTO DE OPERAÇÃO DA BOMBA DE ALIMENTAÇÃO DA SOLUÇÃO AQUOSA DE FLUORETO DE AMÔNIO	93
5.6 SIMULADORES DA PLANTA DE SECAGEM	110
6 CONCLUSÕES	116
7 SUGESTÕES PARA TRABALHOS FUTUROS	117
REFERÊNCIAS	118
APÊNDICE A - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 87°C	124
APÊNDICE B - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 88°C	125
APÊNDICE C - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 89°C	126

APÊNDICE D - Simulação da planta Galaxie Modelo "3530" para secagem de fluoreto de amônio - TSAR = 90°C	127
APÊNDICE E - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 91ºC	128
APÊNDICE F - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 92°C	129
APÊNDICE G - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 93°C	130
APÊNDICE H - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 94ºC	131
APÊNDICE I - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 95ºC	132
APÊNDICE J - Simulação da planta Galaxie Modelo "3530" para secagem de fluoreto de amônio - TSAR = 96°C	133
APÊNDICE L - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 97°C	134
APÊNDICE M - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 98°C	135
APÊNDICE N - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 99°C	136
APÊNDICE O - Simulação da planta Galaxie Modelo ''3530'' para secagem de fluoreto de amônio - TSAR = 100°C	137
APÊNDICE P - Temperatura e umidade relativa do ar medidas no período de 18/03/2004 a 10/05/2004	138
APÊNDICE Q – Tabela de correlação da freqüência do motor da bomba de alimentação da solução de fluoreto de amônio	152
APÊNDICE R – Dados de freqüência (%) do motor da bomba de alimentação da solução de fluoreto de amônio e dos valores das	
temperaturas de entrada e saída do ar do equipamento de secagem, coletados no período de 18/03/2004 a 10/05/2004	153
ANEXO A – Carta psicrométrica. – propriedades de mistura de ar e vapor de água entre 32ºF e 600ºF	167

ANEXO B – Curva característica da bomba de alimentação da solução aquosa de fluoreto de amônio	168
ANEXO C – Tabela de distribuição de Student	169
ANEXO D – Autorização das Indústrias Nucleares do Brasil (INB)	170

1 INTRODUÇÃO

A secagem é um dos processos térmicos mais utilizados nas indústrias. O presente trabalho enfoca o estudo da secagem da substância fluoreto de amônio sob a forma de solução aquosa a 12% em massa, no equipamento de *spray dryer*, de escala industrial, situado na Fábrica de Combustível Nuclear - II (FCN-II), das Indústrias Nucleares do Brasil (INB), localizada no município de Resende, no Estado do Rio de Janeiro.

O fluoreto de amônio é um subproduto das fábricas de reconversão de dióxido de urânio (UO₂). Este por sua vez é um composto utilizado sob a forma de pastilhas no elemento combustível presente em reatores nucleares do tipo *pressure water reactor* (PWR).

1.1 OBJETIVOS

O presente trabalho propôs estudar e avaliar a produtividade, o custo e a eficiência térmica global do processo de secagem de uma solução aquosa de fluoreto de amônio por *spray dryer*, a partir de dados de operação coletados de uma planta industrial existente.

Para o desenvolvimento deste trabalho, foram construídos simuladores de operação do sistema de secagem sob a forma de planilhas eletrônicas de cálculo.

1.2 JUSTIFICATIVA

Como o fluoreto de amônio, uma vez purificado e cristalizado, possui razoável valor comercial, há portanto, a necessidade de transformar o subproduto do processo de reconversão de UO_2 em mais um produto de mercado para essas empresas.

Também poucos são os trabalhos publicados na literatura que abordam de forma sistemática a secagem de fluoreto de amônio. Portanto, investiga-se, neste trabalho, a influência das condições de operação do *spray dryer* na eficiência da produtividade da planta e na eficiência térmica global durante a secagem de uma solução aquosa de fluoreto de amônio.

Os simuladores de operação da planta de secagem desenvolvidos poderão ser aplicados no ensino de modelagem e simulação de processos e/ou do processo de secagem, dentro das disciplinas pertinentes, como por exemplo de Termodinâmica e Operações Unitárias, nos cursos de graduação de Engenharia Química e de Produção.

1.3 AUTORIZAÇÃO DA INDÚSTRIA

A INB autorizou a publicação dos dados de sua planta de secagem contidos neste trabalho. A aprovação da INB encontra-se no ANEXO D.

2 REVISÃO BIBLIOGRÁFICA

2.1 PROCESSO DE SECAGEM

Secagem é a separação de um líquido de uma mistura homogênea ou heterogênea. Este líquido é físicoquimicamente separado através de uma substância higroscópica (geralmente um gás) que atua como um agente secante.

2.1.1 PROCESSO DE SECAGEM TÉRMICA

Na secagem térmica, o calor é fornecido por condução, convecção ou radiação ao produto a ser secado. Este calor é usado para evaporar ou vaporizar a o líquido (geralmente a água) da mistura.

Nos processos de secagem térmica, calor e massa são simultaneamente transferidos. Se a superfície do produto for suficientemente úmida, a taxa de secagem é somente função da massa e da transferência do calor para a superfície (evaporação na superfície). Caso contrário, a taxa de secagem será bastante influenciada e controlada pela transferência de calor e o movimento do líquido será para dentro da superfície do produto (secagem ocorre para dentro do produto). Neste caso, o comportamento higroscópico, estrutura dos poros e a condutividade térmica do produto são fatores decisivos da secagem de acordo com Blackadder e Nedderman (2004).

2.1.2 PROCESSO DE SECAGEM TÉRMICA POR CONVECÇÃO

No processo de secagem térmica por convecção, que é a forma de transferência de calor utilizada em *spray dryer*, é utilizado um gás quente para fornecer calor ao sistema e para transportar o líquido vaporizado ao longo do secador, como é ilustrado na Figura 1.

Figura 1 – Secagem por convecção, Blackadder e Nedderman (2004)

Onde:

Q = calor;

M_V = massa de líquido removida (vaporizada) do produto;

 M_U = material úmido.

2.1.3 PROCESSO DE SECAGEM POR ATOMIZAÇÃO

Atomização é por definição, a transformação de um produto no estado fluído para o estado sólido em forma de pó, através da dispersão de gotículas do material dentro de uma câmara, contatando com ar aquecido (MASTERS, 1979). O material a ser desidratado pode estar na forma de solução, suspensão ou pasta e o resultando em partículas isoladas, grânulos ou aglomerados, sendo que estas formas dependem das propriedades físicas e químicas do material, do projeto e operação do secador.

A Figura 2 apresenta as etapas envolvidas na secagem em spray dryer.

Figura 2 – Etapas envolvidas na secagem em spray dryer

A secagem por *spray dryer* apresenta quatro etapas distintas: atomização do material; contato ar-atomizado; secagem do atomizado e separação do material seco do ar. Cada etapa é realizada segundo o projeto e o modo de operação do secador, que em conjunto com as propriedades físicas e químicas do material, determinam as características do produto seco. A homogeneidade do material atomizado e as altas velocidades de evaporação de umidade permitem uma temperatura do produto menor do que a do ar que sai da câmara de secagem.

Na Figura 3 são apresentadas as principais etapas de secagem por spray dryer.

Figura 3 – Etapas em diagrama de blocos da secagem por spray dryer

A qualidade dos produtos obtidos por atomização depende das características do atomizador e da transferência de calor e massa entre o ar aquecido e as gotículas da câmara de secagem. O líquido é disperso através de alta pressão ou força centrífuga, dependendo do tipo de atomizador, para aumentar a área superficial e expor as gotículas de pequeno diâmetro ao ar de secagem a altas temperaturas. O tamanho das partículas do líquido atomizado fica ao redor de 10 a 200µm e o tempo de secagem é de 5 a 30 segundos, Furuta *et al.* (1994). Nonhebel e Moss (1971) citam tamanho de partículas na faixa de 1 a 300µm, e quando o produto está na forma de esferas ocas, a densidade é baixa. Furuta *et al.* (1994) afirmam que o incremento na área superficial do material a ser atomizado aumenta, com o aumento da velocidade de secagem e o diâmetro das partículas desidratadas em *spray dryer* é afetado pelas condições de secagem. Beltrán *et al.* (2004) enfatizam que o diâmetro das partículas aumentam de acordo com o aumento contínuo da temperatura.

Masters (1979), relata que o termo atomização relacionado ao processo é devido à divisão do líquido em milhões de partículas individuais formando uma nuvem ou spray. Um metro cúbico de líquido forma aproximadamente $2x10^{12}$ partículas uniformes de diâmetro 100µm, equivalente a área superficial de 60.000 m². Durante o contato gotícula-ar, as partículas encontram o ar quente ocorrendo um processo rápido de evaporação a partir das

superfícies das partículas. O controle de umidade ocorre pela regulagem de fluxo e temperatura de processo.

Segundo Leite (2001) e Nogueira (2002), embora a grande maioria dos casos emprega aquecimento do ar atmosférico para remover a umidade de cada gotícula, existem casos em que algumas variações do conceito básico de atomização podem ser necessárias, dependendo do interesse e produto desejados:

 Atomização a temperatura baixa - o meio de secagem deve ser previamente desumidificado e então aquecido a temperaturas acima da atmosférica;

 Atomização de espuma - envolve a introdução de um tipo de gás na alimentação, antes da atomização para produzir partículas especiais contendo vacúolos, tal que se produza baixa densidade;

• Atomização / liofilização - consiste em fazer o *spray* do produto em um ar gelado, e conseqüentemente as gotículas se tornarão individualmente congeladas para que subseqüentemente a umidade seja removida por sublimação sob vácuo;

• Atomização / resfriamento - neste caso a temperatura do ar deve apenas permitir a solidificação das gotículas.

2.1.4 ETAPAS DO PROCESSO

2.1.4.1 ATOMIZAÇÃO DA SOLUÇÃO ALIMENTADA

A formação do produto atomizado e o contato ar-atomizado são as etapas características da secagem por atomização. A seleção e operação do atomizador são de grande importância quando o objetivo é alcançar um custo mínimo de produtos atomizados com qualidade.

A etapa de atomização deve criar um pulverizado com condições ótimas de evaporação, que permita alcançar um produto seco e com as características requeridas.

Para a pulverização são utilizados atomizadores giratórios (discos) ou de bicos de pressão.

2.1.4.1.1 ATOMIZADORES ROTATÓRIOS

A alimentação é introduzida pelo centro, sobre um sistema giratório. O fluxo se desloca por ação de uma força centrífuga para a periferia, onde a suspensão se desintegra na forma de gotas. Um amplo raio de características do atomizado é obtido pela variação da vazão de alimentação, velocidade do sistema e projeto do mesmo. A Figura 4 mostra um exemplo de um atomizador rotatório, com um disco atomizador na forma de um prato invertido.

Figura 4 – Conjunto atomizador a disco centrífugo, com um disco atomizador na forma de um prato invertido, Foust *et al.* (1982)

Os sistemas de atomização, representados na Figura 5, com chicanas podem operar para produzir atomizados de granulometrias finas e médias. E os de disco são utilizados quando é necessário obter granulometrias grossas, com alta capacidade de produção. Os desenhos dos discos podem ser: pratos, taças e recipientes côncavos invertidos.

Figura 5 – Discos atomizadores próprios para diversas aplicações. O superior é um disco com chicanas retas, e o inferior é um disco de alta capacidade com bicos resistentes a abrasão, Foust *et al.* (1982)

2.1.4.1.2 BICOS DE PRESSÃO

Neste sistema de pulverização a alimentação chega ao bico de pressão, a suspensão gira dentro do bico por ação da pressão e sai pelo orifício do bico. A Figura 6 mostra um destes bicos para melhor visualizarmos o seu projeto.

Figura 6 – Bico de pressão a um só fluido. a) entrada do fluido sob pressão; b) Núcleo; c) Bico do bocal. Foust *et al.* (1982) Os atomizadores que utilizam o sistema de bicos, quando trabalham com vazões grandes de alimentação produzem um produto com menor homogeneidade e mais grossos do que os produzidos por atomizadores rotatórios com chicanas. Quando os valores de vazão são baixos, os atomizados obtidos são pelos dois procedimentos são comparáveis. Com a duplicação do número de bicos, é obtido um atomizado mais fino. Ainda que a utilização dos bicos é empregada quando o objetivo são pós atomizados grossos, com tamanho médio entre 120 e 250µm. De acordo com Huang *et al.* (2005), o atomizador a disco possui uma melhor performance quando empregado em câmaras de secagem mais largas, pois o *spray* gerado ocupa um maior volume dentro da câmara do que o spray produzido pelo atomizador de bicos de pressão. Por outro lado, o atomizador de bicos de pressão é melhor em câmaras mais compridas e finas, devido ao seu *spray* se concentrar no centro da câmara.

2.1.4.2 CONTATO AR - ATOMIZADO

O contato ar - atomizado é determinado pela posição do atomizador em relação a entrada do ar de secagem (Figura 7). A escolha de um destes sistemas é uma função do tamanho médio da partícula de atomizado e da possível degradação térmica do produto.

Figura 7 – Contato ar-atomizado: 1 - entrada de ar; 2 - entrada de produto; 3 - saída de ar; 4 - saída de produto e 5 - atomizador. Perry e Green (1997)

O projeto da câmara e o método de introdução do ar são selecionados de acordo com:

- Tamanho de partícula necessário;
- Forma da partícula seca;
- Temperatura a que pode ser submetida a partícula seca.

Na Tabela 1 está detalhada a forma de eleger o atomizador mais adequado, em função das características requeridas no pó atomizado e de sua temperatura máxima de trabalho.

Tamanho médio do atomizado	Temperatura máx. do pó	Sistema de atomização	Tipo de atomizador
Fino (30~120µm)	Baixa (25°C)	Rotatório	Contato concorrente
Grosso (120~250µm)	Baixa (25°C)	Bico	Contato concorrente
Grosso (120~250µm)	Alta	Bico	Mistura

Fonte: Vieira (1999)

2.1.4.3 SECAGEM DO ATOMIZADO

No momento que as gotas do atomizado entram em contato com o ar de secagem, inicia o processo de evaporação. Este começa pela película de vapor saturado que circunda a superfície da gota. A temperatura da superfície da gota se aproxima da temperatura de bulbo úmido do ar de secagem.

A carta psicrométrica mostrada no ANEXO A, é muito útil e prático para analisar a secagem. Ela resume e define as condições de estado em uma mistura do gás (ar) e o líquido evaporado (vapor d'água).

A evaporação ocorre em duas fases; na primeira existe suficiente umidade dentro da gota para recolocar a que se perde pela superfície. A difusão da água desde o centro da gota mantém saturada a superfície; enquanto esta fase dura, a evaporação se dá à velocidade constante. Portanto neste período, há um equilíbrio dinâmico entre a velocidade de transferência de calor para o material e a velocidade de remoção do vapor da superfície. Este período denomina-se período de velocidade de secagem constante ou primeiro período de secagem e está representado pelo segmento BC das Figuras 8, 9 e 10.

Quando o conteúdo de umidade decresce e não pode manter a saturação na superfície, se alcança o ponto crítico ou teor de umidade crítico, representado pelo ponto C das Figuras 8, 9 e 10. Ao atingir este ponto, a evaporação dependerá da velocidade de difusão da água no interior da gota. A espessura da zona seca aumenta com o tempo, provocando uma diminuição da velocidade de evaporação. Esta etapa é denominada de período de velocidade de secagem decrescente ou segundo período de secagem.

A forma e o tamanho dos grãos do pó produzido não é uniforme, já que as diversas gotas geradas no atomizador exibem diferentes comportamentos durante a evaporação. Ao serem secas, esses materiais tendem a expandir, outros fraturam ou desintegram, gerando formas porosas e outros mantêm uma forma esférica constante ou inclusive contraem, de modo que as partículas aumentam de densidade.

As variações do formato das partículas e das características do pó estão intimamente relacionados com a velocidade de secagem.

Figura 8 – Os períodos da secagem – teor de umidade x tempo, Perry e Green (1997)

Figura 9 – Os períodos da secagem – taxa de secagem x teor de umidade, Perry e Green (1997)

Figura 10 – Os períodos da secagem – velocidade de secagem x tempo, Perry e Green (1997)

2.1.4.4 SEPARAÇÃO DO PRODUTO SECO DO AR

Podem ser utilizados dois sistemas distintos para a recuperação do produto, conforme esquematizados na Figura 11.

Figura 11 – Sistemas de recuperação de produto. 1 - Produto; 2- Ar; 3- Câmara; 4-Ciclone, Vieira (1999)

No sistema 1, a separação primária do produto ocorre na base do atomizado (Figura 11a). Durante a operação, a maior parte do produto fica depositado na base da câmara, enquanto que uma pequena fração é arrastada pelo ar e recuperada pelo equipamento de separação. Estes equipamentos são normalmente ciclones que realizam a coleta da parte seca, e os lavadores que realizam a coleta úmida da parte final. Uma alternativa aos ciclones são os filtros de mangas e os precipitadores eletrostáticos mostrados na Figura 12.

Com este sistema são separados os grossos, que são recolhidos na câmara de secagem, e os finos, que são recolhidos nos separadores, mas ambas frações são unidas posteriormente.

No sistema 2, conforme a Figura 11b, a recuperação do produto seco é realizada em um equipamento de separação. A separação do produto seco do ar exerce influência sobre as propriedades posteriores do pó, uma vez que um excessivo manejo mecânico pode produzir pós que tenham porcentagens altas de finos.

Figura 12 – Esquema de uma planta de atomização, Vieira (1999)

Onde:

a) Ar;

- b) Alimentação;
- c) Produto Seco;
- 1) Câmara de secagem;
- 2) Ciclone;
- 3) Lavador;
- 4) Filtro de mangas;
- 5) Precipitador Eletrostático.

2.2 TERMINOLOGIA RELATIVA À FORMA DO FLUORETO DE AMÔNIO

2.2.1 GOTAS

Indicam o estado de subdivisão do produto atomizado. Enquanto a superfície do grânulo está úmida, o atomizado é dito composto por gotas.

2.2.2 PARTÍCULAS

Indicam o estado de subdivisão do produto seco. A forma da partícula depende do modo em que se forma a gota e do comportamento desta durante a secagem.

2.2.3 AGLOMERADO

Quando duas ou mais partículas estão aderidas umas nas outras.

2.2.4 TAMANHO

O tamanho de uma partícula, gota ou aglomerado é a dimensão representativa das mesmas. Para partículas esféricas o diâmetro das mesmas representa o seu tamanho, para partículas não esféricas o tamanho pode ser representado por um diâmetro aparente.

2.2.5 FORMA DA PARTÍCULA

A complexidade dos mecanismos de atomização e as distorções das gotas durante a secagem provocam em muitos casos que os produtos secos não apresentem partículas esféricas. Para expressar o desvio da esfericidade é utilizado um fator de forma definido como a relação entre a superfície ou o volume verdadeiro e a superfície ou o volume total obtido mediante técnicas de medida de partículas que suponham a esfericidade das partículas (análise microscópica ou peneiramento).

2.2.6 DISTRIBUIÇÃO GRANULOMÉTRICA

Os atomizadores não podem produzir partículas homogêneas e ainda as gotas de atomizado estão sujeitas a diversas distorções de forma que dependem das características de secagem e da trajetória das mesmas no atomizador. Em função destes fatores é que se utiliza a distribuição granulométrica como forma de representação.

2.3 PROPRIEDADES DO AR ÚMIDO

Para a secagem da solução de fluoreto de amônio, é necessário o estudo das características do ar utilizado e para isso é necessário definir algumas propriedades do ar úmido.

2.3.1 TEMPERATURA DE BULBO SECO (T)

É a temperatura real ou termodinâmica do ar úmido.

2.3.2 TEOR DE UMIDADE OU UMIDADE ABSOLUTA (X)

É a quantidade de umidade no ar expresso em quilograma de água por quilograma de ar seco. O teor de umidade, portanto é zero para gás puro e infinito para vapor puro. O teor de umidade, sendo uma razão de massa, é adimensional, mas comumente é colocado em termos de kg de vapor por kg de gás seco. Se o gás e o vapor puderem ser considerados gases perfeitos, o teor de umidade estará relacionado à pressão parcial do vapor, P^V , através da Equação 1.

$$X = (M^{V}.P^{V}) / [M^{G}.(P-P^{V})]$$
 Equação 1

Onde M^G e M^V são respectivamente, os as massas molares do gás e do vapor e P a pressão total. Considerando $M^G = 28,9$ g/mol e $M^V = 18$ g/mol, temos então que a Equação 1 resulta na Equação 2.

$$X = (0,622.P^{V}) / (P-P^{V})$$
 Equação 2

2.3.3 UMIDADE DE SATURAÇÃO (X^{sat})

Quando uma mistura gás-vapor está em equilíbrio com o líquido, a pressão parcial do vapor iguala a pressão do vapor saturado, P^{sat}, e a umidade é definida como a umidade de saturação, X^{sat}, pela Equação 3.

$$X^{sat} = (0,622 . P^{sat}) / (P - P^{sat})$$
 Equação 3

2.3.4 SATURAÇÃO RELATIVA OU UMIDADE PERCENTUAL (XP)

É a razão entre o teor de umidade e a umidade de saturação na mesma temperatura de bulbo seco e pressão total, dada pela Equação 4.

$$X^{P} = (100 . X) / X^{sat} = [100 . P^{V}.(P - P^{sat})] / [P^{sat}.(P - P^{V})]$$
 Equação 4

O índice de saturação relativa não tem sentido em temperaturas superiores ao ponto de ebulição do líquido.

2.3.5 VOLUME ÚMIDO (Vu)

É o volume do ar úmido que ocupa um quilograma de ar seco (m³ de ar úmido / kg de ar seco).

2.3.6 DENSIDADE DO AR ÚMIDO (p^m)

A densidade do ar úmido pode ser calculado pela equação dos gases perfeitos.

Considerando que P (pressão total) é normalmente 1 atm, a massa molar média do ar úmido será dada pela Equação 5.

$$M^{m} = y^{V} \cdot M^{V} + (1 - y^{V}) \cdot M^{G} = (P^{V}/P) \cdot M^{V} + [1 - (P^{V}/P)] \cdot M^{G} = [M^{G} - P^{V} \cdot (M^{G} - M^{V})] / P$$
Equação 5

Substituindo na equação dos gases perfeitos:

$$\rho^{m} = (P . M^{m}) / R . T = [(P . M^{G}) / R . T] - [P^{V}.(M^{G} - M^{V})] / R . T$$
 Equação 6

onde R = 8310 J/K.mol.kg.

O primeiro termo da equação representa a densidade do ar seco, em função do qual a densidade do ar úmido é sempre menor que a do seco.

2.3.7 UMIDADE RELATIVA (X^R)

É a razão entre a pressão parcial do vapor e a pressão de vapor saturado na mesma temperatura de bulbo seco, isto é:

$$X^{R} = 100 \cdot P^{V} / P^{sat} = 100 \cdot [1 + (M^{V}/M^{G}.X^{sat})] / [1 + (M^{V}/M^{G}.X)]$$
 Equação 7

A primeira parte desta expressão vale até mesmo acima do ponto de ebulição do líquido. Em baixas temperaturas, quando ocorre $P^{sat} \ll P$, a umidade relativa aproxima-se da saturação relativa.

A partir das Equações 2 e 7, obtemos a Equação 8.

$$X = (0,622 . P^{sat} . X^{R}) / [100 . P - (P^{sat} . X^{R})]$$
 Equação 8

Que permite calcular a umidade absoluta a partir da umidade relativa.

2.3.8 TEMPERATURA DE PONTO DE ORVALHO (T^D)

Se uma mistura gás-vapor for resfriada continuamente, haverá um momento em que o vapor se condensará. A temperatura de ponto de orvalho é a temperatura na qual, desprezando os efeitos da supersaturação, forma-se um líquido pela primeira vez. Assim, a temperatura do ponto de orvalho é a temperatura na qual a umidade de uma amostra seria igual à umidade de saturação.

2.3.9 ENTALPIA DE UMA MISTURA AR - VAPOR (h)

Considerando que a mistura ar-vapor d'água possui componentes não-reagentes, cada uma delas terá seu próprio valor arbitrário de entalpia. A entalpia do gás totalmente seco normalmente é tomada como sendo zero na pressão total do sistema e em certa temperatura T_o (normalmente 0°C), e a entalpia das substâncias condensáveis é tomada como sendo zero para líquido na temperatura base T_o . Assim, a temperatura de 1kg de gás mais qualquer valor nele contido, ou seja, 1 + X kg de mistura, é dada pela Equação 9.

$$h = c^{G} (T - T_{o}) + X \{c^{V} (T - T_{o}) + \lambda_{o}\}$$
 Equação 9

Onde c^{G} e c^{V} são os calores específicos do gás e do vapor, respectivamente, e λ_{o} é o calor latente do vapor na temperatura base T_o. Aqui se consideram os calores específicos como constantes.

2.3.10 CALOR ESPECÍFICO ÚMIDO (s)

O termo c^{G} + X. c^{V} da equação anterior é chamado calor específico úmido, s. Fazendo c^{G} = 1 kJ/K.kg de ar seco e c^{V} = 1,92 kJ/K.kg de ar seco, obtemos a Equação 10.

$$s = 1 + 1,92.X$$
 Equação 10

Para uma mistura de gases perfeitos, o calor específico úmido é uma função somente da umidade.

Logo reescrevendo a equação para a entalpia da mistura, obtemos a Equação 11.

 $h = s.(T - T_o) + X.\lambda_o Equação 11$

Fazendo $T_o = 0$, $\lambda_o = 2479$ kJ/kg de água e substituindo a Equação 10 na Equação 11, obtemos a Equação 12.

$$h = T + 1,92.X.T + 2479.X$$
 Equação 12

2.3.11 TEMPERATURA DE BULBO ÚMIDO (T^W)

Se uma peça de material úmido for exposta a uma corrente de gás, ela terá uma temperatura inferior à temperatura do gás. Esta é conhecida como temperatura de bulbo úmido. Como resultado da diferença de temperaturas, o calor é transmitido para o material numa razão "q" por unidade de área dada pela Equação 13.

$$q = h_t.(T - T^W)$$
 Equação 13

Onde h_t é o coeficiente global de transmissão de calor.

A quantidade de calor faz uma parte do líquido evaporar. A razão de transmissão de massa por unidade de área, N, é dada pela Equação 14.

$$N = K_G.(P^W - P)$$
 Equação 14

Onde P^W é a pressão parcial de vapor na superfície do material, que é a pressão de vapor saturado a T^W , e K_G é o coeficiente de transmissão de massa.

2.4 PROPRIEDADES DOS SÓLIDOS ÚMIDOS

Primeiro deve existir uma diferenciação entre sólidos propriamente úmidos e sólidos higroscópicos. Os sólidos propriamente úmidos são aqueles nos quais a pressão de vapor de água na interface (também chamada de pressão de equilíbrio) não depende da quantidade de umidade do sólido, e sim somente da temperatura do sólido e da temperatura ambiente. Estes sólidos são insolúveis em água e não apresentam afinidade química com ela.

Os sólidos higroscópicos, como é o caso do sal de fluoreto de amônio, apresentam uma pressão de equilíbrio que varia não apenas com as temperaturas do sólido e do ambiente, como também, com a umidade e a natureza do sólido. A maioria das substâncias pertence a este grupo. Podem ser insolúveis ou totalmente solúveis em água.

2.4.1 CONTEÚDO DE UMIDADE (τ)

É a quantidade de água que o sólido contêm, e pode ser expressa de duas formas:

- Sobre base seca: (kg de água / kg de sólido seco) = Razão mássica.
- Sobre base úmida: (kg de água / kg de sólido úmido) = Fração mássica.

2.4.2 UMIDADE DE EQUILÍBRIO (τ^{E})

É a quantidade de umidade de um sólido que está em equilíbrio com o ar a determinada temperatura e umidade relativa. É normalmente expressa em base seca.

2.4.3 UMIDADE LIVRE

É a umidade em excesso sobre a de equilíbrio, ou seja, é a umidade eliminável pelo sólido ao entrar em contato com o ar a uma determinada temperatura e umidade relativa.

A umidade livre depende da umidade do sólido e da umidade relativa do ar, uma vez que ao se modificar altera a umidade de equilíbrio.

2.4.4 UMIDADE LIGADA

É o liquido contido pelo sólido que exerce uma pressão de vapor menor do que a do líquido puro a mesma temperatura. Isto implica em que a presença do sólido influi na volatilidade da água, em função do qual deve admitir-se que a água está ligada ao sólido por algum tipo de força.

2.4.5 UMIDADE NÃO LIGADA

É a quantidade de umidade que um sólido contém em excesso sobre a ligada. Esta umidade exerce na interface uma pressão parcial igual à de vapor na dita temperatura.

Convém ressaltar que enquanto a umidade ligada e a não ligada dependem unicamente do corpo, a umidade de equilíbrio e a umidade livre dependem do corpo e do ar que o circunda.

2.4.6 ISOTERMAS DE ADSORÇÃO

A curva de equilíbrio é a representação gráfica da relação quantitativa existente entre o conteúdo de umidade de um sólido e a umidade relativa do ar que esta em contato com ele, quando é alcançado o estado em que o sólido não ganha nem perde umidade. Estas curvas se denominam isotermas de adsorção.

Quando é colocado em contato um sólido em certas condições de umidade (τ) e um ar de umidade relativa (X^R), o sólido ganhará ou perderá umidade de acordo com a posição das ordenadas " τ " e " X^R " na curva de equilíbrio. Na Figura 13, o ponto A indica que o sólido ganhará umidade aproximando-se do equilíbrio e o ponto B indica que o sólido perderá umidade. De acordo com Guerra (2005), a curva de equilíbrio é muito importante na avaliação do consumo de energia para o processo de secagem.

Figura 13 – Representação da isoterma de adsorção, Vieira (1999)

2.4.7 SÓLIDOS INSOLÚVEIS HIGROSCÓPICOS

A variação da umidade de equilíbrio com a umidade relativa do ar ocorre de acordo com a representação da Figura 14. Estas curvas são muito parecidas com as de equilíbrio de adsorção, por isto têm-se tentado interpretar estas curvas como se tratasse de uma adsorção física de um vapor sobre um sólido.

As curvas de equilíbrio sofrem com freqüência o efeito da histerese, análogo ao que se apresenta na adsorção. Com efeito, segundo a umidade inicial do produto seja baixa ou alta, são obtidas curvas de equilíbrio ligeiramente distintas.

Para um mesmo sólido e uma umidade relativa do ar constante, verifica-se que a umidade de equilíbrio do sólido diminui quando aumenta a temperatura. Ou seja, a curva de equilíbrio aproxima-se do eixo das abscissas.

Figura 14 – Variação da umidade de equilíbrio com a umidade relativa do ar, Vieira (1999)

2.4.8 SÓLIDOS SOLÚVEIS HIGROSCÓPICOS

Os sólidos que são solúveis no líquido que possui, como é o caso do sal de fluoreto de amônio e bifluoreto de amônio, apresentam normalmente curvas de equilíbrio totalmente diferentes do descrito anteriormente. Quando a pressão parcial do vapor de água no ar é inferior a pressão de vapor da dissolução saturada, a umidade de equilíbrio do sólido pode ser muito pequena. No caso contrario, o sólido adsorve umidade do ambiente e se dissolve, formando em primeiro lugar uma dissolução saturada cuja tensão de vapor é inferior à do líquido puro, segundo a lei de Raoult. Se a pressão parcial de vapor no ar permanece constante, o equilíbrio só é alcançado quando for igualado pela tensão de vapor da dissolução; para isto é necessário que diminua a concentração da dissolução, o qual só é possível quando todo o sólido estiver dissolvido, e a dissolução resultante tenha uma certa concentração.

Quando uma dissolução está em contato com o ar de umidade relativa inferior à de equilíbrio, este tende a concentrar-se. Se a umidade relativa do ar é, todavia menor que a de equilíbrio com a dissolução saturada, se chegará a produzir a precipitação do sólido. Nos sólidos solúveis a umidade ligada é infinita e a não ligada é nula.

2.5 VANTAGENS DO SPRAY DRYER

Segundo Marshall (1955) e Correa e Farias (1995), o *spray dryer* possui uma série de vantagens em relação a outros equipamentos de secagem, como o secador a tambor e o rotativo, dentre elas:

• A questão de poder trabalhar de forma contínua e de possuir facilidade de automação.

- Nele há a curta exposição do produto aos gases quentes, ao mesmo tempo em que a evaporação do líquido das gotículas mantém a temperatura do produto baixa, até na presença de gases muito quentes.
- Produz partículas esféricas, o que é difícil sua obtenção por outros processos de secagem.
- Pode operar com uma faixa de temperatura de entrada alto (de 90°C a 540°C) e sua eficiência evaporativa são comparáveis ou até melhor que de outros tipos de secadores diretos.

2.6 PARÂMETROS QUE INFLUENCIAM O PROCESSO

De acordo com Nogueira (2002), a atomização é resultante da aplicação de uma energia de forma a agir sobre o líquido, até o ponto que ocorre o seu rompimento e desintegração criando uma nuvem de gotículas. Esta nuvem entra em contato com o ar quente a elevadas temperaturas, onde ocorre a secagem, resultando na coleta do produto em pó.

Existem diferentes técnicas de atomização concebidas a partir de diferentes formas de energia aplicadas sobre o líquido, sendo comum em todos os atomizadores o uso de energia para romper o líquido. A classificação dos atomizadores está relacionada às energias centrífuga, devido à pressão e cinética. Existem também os atomizadores ultrassônicos e vibratórios, porém, são menos comuns.

As variáveis que Duffie e Marshall Jr. (1953) preconizam como as que afetam as propriedades de produtos obtidos na atomização são:

- variações na concentração de alimentação;
- variações na temperatura de alimentação;
- variações na temperatura do ar;

- variações nos métodos e condições de atomização;
- diferenças nas propriedades físicas e químicas do material de alimentação.

Como propriedades dos produtos devem ser avaliados:

- densidade aparente;
- volume aparente;
- tamanho da partícula e distribuição (incluindo finos);
- resistência da partícula à ruptura;
- conteúdo de umidade;
- dispersibilidade ou tendência à aglomerar;
- retenção da qualidade desejada ao produto (como aroma, valor alimentício, cor, reconstituibilidade, dentre outras).

Goula e Adampoulos (2004), citam a redução do teor de umidade do pó produzido, através do aumento da temperatura de entrada do ar e da diminuição da vazão de ar.

Masters (1979), reporta a relação do tamanho das gotículas e variáveis operacionais de atomizadores, conforme a Tabela 2.

Diâmetro	Variável de operação	Efeito observado
D	v_R^{-p}	Aumento de v _R , diminui D
D	F^q	Aumento de F, aumenta D
D	$\overline{\omega}^{r}$	Aumento da ϖ , aumenta D
D	σ^{s}	Aumento da σ , aumenta D
D	${\rho_F}^t$	Aumento de ρ_F , aumenta D
D	φ ^{-u}	Aumenta <i>\ophi</i> , diminui D

Tabela 2 – Relação entre padrão de tamanho de gotículas e variáveis de operação para atomizadores centrífugos

Fonte: Masters (1979)

Onde p, q, r, s, t, u são valores inteiros e dependem das condições de operação.

Masters (1979) cita equações empíricas para estimar a média do tamanho das gotículas, relatando a existência de grande diferença entre os valores teóricos e os valores experimentais (de um modo geral os valores teóricos são maiores), demonstrando a possibilidade da não-representatividade da amostra, devido a formação dos finos, partículas muito grandes, perdas por deposição, atrito, etc.

Embora a tecnologia de secagem por atomização necessite de altos investimentos em instalações, a produção de partículas de qualidade consistente, fácil realização do processo de modo contínuo e capacidade de processar diversos tipos de matérias-primas fazem com que esta tecnologia seja amplamente utilizada, WENDEL e ÇELIK (1998).

A seguir são expostas de uma forma sucinta, as terminologias adotadas em sistemas de atomização.

2.7 ABORDAGENS NA LITERATURA SOBRE MODELAGEM DA SECAGEM POR ATOMIZAÇÃO

No passado, os modelos foram desenvolvidos para o processo de secagem por vários métodos diferentes. Segundo Vieira (1999), estes métodos incluem:

i) abordagens empíricas (TURBA e NEMETH, 1964; FEDER, 1959);

ii) abordagens analíticas (SJENITZER, 1962; SJENITZER, 1952; MIESSE, 1954;
SCHLUNDER, 1962; GLUCKERT, 1962; PROBERT, 1946; SHAPIRO e ERICKSON,
1957; MARONE, 1971; YARON e GAL-OR, 1971);

iii) métodos numéricos (GAUVIN e KATTA, 1975; GAUVIN e KATTA, 1976; MARSHALL, 1955; DICKINSON e MARSHALL, 1968; DLOUHY e GALVIN, 1960; CHARLESWORTH e MARSHALL, 1960; MCILVRIED e MASSOTH, 1973; LEONCHIK, 1964; VIEHWEG *et al.*, 1974; JANDA, 1977).

Têm sido levantadas críticas em relação as abordagens (i) e (ii) no sentido de que são irrealistas ou extremamente simplificadas, o caso (i) exige demasiadas pressuposições simplificativas, devido ao número de parâmetros que interagem, e o caso (ii) trata principalmente das relações das gotas individuais, embora existam exceções notáveis (PROBERT, 1946; SHAPIRO e ERICKSON, 1957).

O aumento no uso de computadores resultou na predominância dos métodos numéricos, e seu uso na secagem por atomização tem se tornado norma nos anos recentes (GAUVIN e BALTAS, 1969; GAUVIN e KATTA, 1975; GAUVIN e KATTA, 1976; MARSHALL, 1955; JANDA, 1977).

Para produzir em um secador do tipo *spray* uma forma de um produto desejado, é necessário entender quais as variáveis que exercem a maior influência sobre o controle dos processos físicos essenciais que estão ocorrendo. Para obter uma capacidade de previsão é

bastante útil modelar de uma forma realista as características essenciais do processo. Realizar isto por meios puramente analíticos tem demonstrado ser uma tarefa bastante complexa para a natureza dos mecanismos físicos básicos que interagem durante o processo. E estes mecanismos devem ser descritos de uma forma matemática conveniente, o que raramente é possível sem um grande número de pressuposições simplificadoras. As duas considerações chaves descritas acima são:

- O efeito da transferência simultânea de calor e de massa na taxa de evaporação quando uma distribuição de gotas é contatada com uma corrente de gás de secagem;
- O efeito da mudança do tamanho e da trajetória da gota no processo de secagem.

Pressupondo que a distribuição inicial dos tamanhos das gotas e a direção do movimento possam ser obtidas, a abordagem geralmente adotada nos estudos mais recentes nesta área é a de resolver um conjunto de equações diferenciais que descrevem o processo de transferência de calor e de massa através de métodos numéricos (GAUVIN e BALTAS, 1969; GAUVIN e KATTA, 1975; GAUVIN e KATTA, 1976; KEEY e PHAM, 1976; JANDA, 1977; KEEY e PHAM, 1977).

Se as informações acima, com relação a trajetória são viáveis, os efeitos de transferência simultânea de calor e de massa podem ser quantificados a incrementos de tempos ou de distância dentro da câmara de reação e assim através de um cálculo passo-a-passo (DLOUHY e GALVIN, 1960), podem ser prognosticados a taxa de evaporação e o tamanho mutante da gota.

É necessário também calcular, a cada etapa, a temperatura local e a umidade do gás de secagem, como são estas propriedades da corrente de gás, as quais determinam a taxa de evaporação posterior, na próxima umidade incremental. Também, à medida que ocorre a evaporação, as propriedades psicrométricas do gás em si mesmas se tornam diretamente dependentes da taxa de evaporação (GAUVIN e BALTAS, 1969; GAUVIN e KATTA, 1975; GAUVIN e KATTA, 1976).

Este tipo de abordagem foi adotado por numerosos pesquisadores e o método de resolução é o tipicamente discutido por Marshall (1955). Keey & Pham (1976) detalharam os métodos que foram desenvolvidos para o projeto numérico dos *spray dryers*, e também descrevem detalhadamente seus próprios recentes estudos, nos quais os métodos apresentados acima foram empregados com numerosas expressões diferentes, que descrevem a distribuição característica dos tamanhos das gotas.

Outros métodos numéricos foram desenvolvidos por Janda (1977), Gauvin e Katta (1975, 1976) e por Gauvin & Baltas (1969).

Além da incerteza de utilizar o coeficiente padrão de arrastamento no caso de uma nuvem de gotas em evaporação, outro problema essencialmente sem solução é a previsão de situações reais do conteúdo crítico de umidade (MCILVRIED, 1973).

Contudo, as melhores técnicas numéricas são bastante sofisticadas e podem prognosticar razoavelmente bem os efeitos que os parâmetros operacionais do *spray dryer* terão no processo, especialmente quando forem fornecidas informações suficientes provenientes de unidades de planta piloto.

Straatsma *et al.* (1999) desenvolveram então modelos computacionais para fluidos dinâmicos em duas dimensões, para o processo de secagem por *spray dryer*, em planta piloto. Langrish e Kockel (2000) logo desenvolveram modelos em três dimensões para a secagem por *spray dryer*, que posteriormente foram aplicados com sucesso por Langrish e Fletcher (2001), Reinhold (2001), Ducept *et al.* (2002) e Fletcher *et al.* (2002).

Assim, os métodos de projeto e as previsões sobre o desempenho do *spray dryer* têm mudado de uma base semi-empírica para uma base razoavelmente analítica e numérica.

Previsões através do aumento de escala não são totalmente confiáveis, até agora, devido à falta de informações disponíveis sobre a dinâmica das nuvens de gotas numa corrente de gás no momento da evaporação, e a natureza complexa dos padrões do fluxo de gás gerados em *spray dryers* de maior tamanho.

Finalmente, no passado, os modelos que descreveram os processos de secagem total por atomização foram irrealistas ou demasiadamente simplificados. Muitos avanços ocorreram nos últimos 10 anos em relação aos processos básicos de transporte que realizam, e desde que informações suficientes sobre as instalações da fábrica estão disponíveis, os modelos empíricos agora fornecerão uma aproximação razoável do desempenho dos secadores em escala (tamanho) total, com as condições dadas acima.

Mas, como a ação sobre o controle operacional de um sistema de secagem por atomização é considerada complexa, onde os operadores responsáveis por estes controles devem tomar decisões quando realizam os ajustes necessários para o bom funcionamento de todo o processo. Essas decisões são tomadas, normalmente, levando em consideração medidas qualitativas baseadas em variáveis medidas quantitativamente no ambiente de produção.

3 DESCRIÇÃO DO PROCESSO

3.1 O EQUIPAMENTO UTILIZADO

O *spray dryer* utilizado como base de estudos e para a coleta de dados, é o de escala industrial da empresa Indústrias Nucleares do Brasil (INB), com 3,5m de diâmetro e 3,0m de altura (parte cilíndrica), empregando-se atomizador centrífugo de disco rotativo com velocidade de rotação constante de 9000 rpm.

Ele consiste de uma câmara cilíndrica grande, vertical, em que o material a ser seco (solução de fluoreto de amônio) é pulverizado na forma de pequenas gotículas e no qual se introduz um grande volume de ar quente, co-corrente ao fluxo de solução aquosa de NH₄F pulverizada pelo atomizador, suficiente para fornecer o calor necessário para completar a evaporação do líquido. O desenho do atomizador empregado é mostrado na Figura 15.

As transferências de calor e de massa são realizadas pelo contato direto entre o ar quente e as gotículas dispersas. Depois de completada a secagem, o ar esfriado e os sólidos são separados. A separação do produto seco do ar quente é feita através de um ciclone externo conforme o sistema 2 descrito na Figura 11b. Os finos são recuperados através de lavadores.

O aquecimento do ar de secagem é feito em uma câmara chamada de aquecedor de ar, que contém na sua entrada, o queimador do combustível, onde ocorre a combustão do gás liquefeito de petróleo (GLP), gerando energia, e portanto, elevando a temperatura do ar ambiente alimentado, gerando ar no estado adequado para a realização da secagem da solução de fluoreto de amônio dentro da câmara de secagem.

O desenho do equipamento é mostrado na Figura 16.

Figura 15 – Esquema do atomizador empregado na planta de secagem, Galaxie (2000)

Figura 16 – Esquema do spray dryer empregado na secagem, Galaxie (2000)

3.2 ALIMENTAÇÕES DO PROCESSO

3.2.1 FLUORETO DE AMÔNIO

A solução a ser secada no spray dryer é uma solução aquosa de fluoreto de amônio a aproximadamente 12% em massa.

O fluoreto de amônio (NH₄F) é um sal higroscópico, com certo odor de amônia, solúvel em água e pouco solúvel em álcool. Decompõe-se em água quente formando amoníaco (NH₃) e bifluoreto de amônio (NH₄HF₂). Suas soluções são levemente ácidas e atacam o vidro $[...]^1$.

Ele é um subproduto oriundo do processo de reconversão do hexafluoreto de urânio (UF_6) em tricarbonato de amônio uranila (TCAU, $(NH_4)UO_2(CO_3)_3$), que é um composto intermediário na obtenção do dióxido de urânio (UO_2) , substância constituinte das pastilhas dos elementos combustíveis de usinas nucleares. A reação química de obtenção do TCAU é iniciada com a hidrólise do hexafluoreto de urânio (UF_6) , proveniente da mistura UF_6/CO_2 , seguida da reação com o gás carbônico (CO_2) e amônia (NH_3) , através de absorção no meio líquido circulante, de acordo com a Reação química 1 (INB, 2005).

$$UF_6 + 5 H_2O + 10 NH_3 + 3 CO_2 \longrightarrow (NH_4)_4 UO_2(CO_3)_3 + 6 NH_4F$$
 Reação 1

Após a precipitação do TCAU, a solução aquosa de fluoreto de amônio é filtrada via filtros à vácuo de prato giratório, e transferida para o circuito de recuperação de compostos de urânio, onde é feita a precipitação do peroxofluoruranato de amônio $(NH_4)_2UO_4F_2$. O filtrado (solução aquosa de fluoreto de amônio), com concentração de urânio menor ou igual a 5mg/L, que é o valor máximo permissível de controle segundo estabelecido no documento da

¹QUÍRIOS, disponível em:

http://www.quirios.com.br/index.php?name=Ezcms&pageid=285&pnbid=&index2=0&index=1&entrada=1

empresa INB – RFAS FCN II – Rev. 3, cap. 7.3, p. 6, é enviado ao sistema de secagem por *spray dryer*.

A especificação da solução aquosa de fluoreto de amônio, que corresponde ao material a ser secado no *spray dryer*, é mostrada na Tabela 3.

DESCRIÇÃO	ESPECIFICAÇÃO	
Aspecto	Líquido transparente com forte cheiro de amônia	
pH	8,5 - 9,5	
Densidade (g/cm ³)	1,05 - 1,10	
Concentração em NH ₄ F	120 - 240 g/L	
Concentração em NH ₄ HF ₂	\leq 10 g/L	
Ferro	≤ 10 mg/L	
Urânio	\leq 5 mg/L ⁽¹⁾	
Fluorosilicato	\leq 50 mg/L	
Cloreto	$\leq 5 \text{ mg/L}$	
Sulfato	≤10 mg/L	
Carbonato	$\leq 5 \text{ mg/L}$	
⁽¹⁾ Teor estabelecido no RFAS FCN II, Rev. 3, capítulo 7.2, página 7.2-18, 2005, para a solução de fluoreto de amônio.		

Tabela 3 – Especificação da solução aquosa de fluoreto de amônio

Fonte: INB - RFAS FCN-II, Rev. 3, capítulo 6.1 a 6.2, jan. 2005

No sal de fluoreto de amônio produzido, há também um certo teor de bifluoreto de amônio (NH₄)HF₂, de acordo com a Reação 2, de equilíbrio químico. O teor de bifluoreto de amônio aumenta consideravelmente em face à parcial decomposição térmica do fluoreto de amônio durante o processo de secagem por *spray dryer*.

 $2 \text{ NH}_4\text{F}$ \longrightarrow $\text{NH}_4\text{F}.\text{HF}$ + NH_3 $\xrightarrow{\bullet}$ Reação 2

3.2.2 GÁS LIQUEFEITO DE PETRÓLEO (GLP)

O gás liquefeito de petróleo (GLP), é utilizado como combustível para fornecer energia térmica ao ar ambiente a partir de sua combustão realizada no queimador, dentro de uma câmara chamada aquecedor de ar.

O consumo de GLP na planta é em torno de 20 a 40 kg/h, dependendo da temperatura final de aquecimento do ar que se deseja obter.

O abastecimento de GLP é feito por caminhões-tanque que descarregam o GLP na planta, sob a forma liquefeita, para tanques pressurizados de estocagem. Desses tanques, o GLP é despressurizado e transportado sob a forma gasosa para os pontos de consumo.

3.2.3 AR AMBIENTE

O próprio ar é utilizado como gás de secagem da solução aquosa de fluoreto de amônio. Antes de entrar na câmara de secagem, ele é aquecido até uma temperatura ideal para a realização da secagem.

O ar ambiente alimenta a câmara de aquecimento através da diferença de pressão gerada entre a câmara de aquecimento e o ambiente externo.

Neste trabalho, considerou-se a temperatura do ar ambiente em 25°C e umidade relativa de 74%, conforme APÊNDICE P. Estas foram as condições médias obtidas para o ar, monitoradas através de um termoigrógrafo colocado junto à Planta de Secagem, no período de 18 de março a 10 de maio de 2004. Foi considerado também a vazão de alimentação do ar ambiente constante em 6000 m³/h, conforme o manual do fabricante do equipamento de secagem (GALAXIE, 2000).

3.3 PRODUTOS DA SECAGEM

Ao remover a umidade da solução de fluoreto de amônio na câmara de secagem, este se cristaliza sendo então transportado pneumaticamente até o ciclone, onde é retirado na corrente de *underflow* (fluxo que sai por baixo do ciclone).

O sal resultante poderá também conter um determinado teor de bifluoreto de amônio, pois o fluoreto de amônio se decompõe em bifluoreto de amônio e amônia, de acordo com a temperatura de trabalho.

A amônia, uma vez produzida, será absorvida pela água no lavador de gases e retornará ao circuito, na água de lavagem, solubilizando mais gases que saem no *overflow* (fluxo que sai por cima do ciclone).

Operando a planta de forma adequada, não há emanação de amônia para a atmosfera pois ela é altamente solúvel em água. Portanto, desde que haja solvente suficiente para solubilizar a amônia, o processo não causa nenhum dano ambiental.

Uma vez saturada, esta água de lavagem pode ser purgada para o tanque de solução de fluoreto de amônio que alimenta a câmara de secagem, ao mesmo tempo em que esta quantidade drenada é reposta por água nova.

Os sais de fluoreto de amônio e bifluoreto de amônio produzidos são armazenados em contenedores flexíveis para produto a granel, confeccionados em tecido de polipropileno trançado, revestidos internamente por sacos impermeáveis, também conhecidos comercialmente como *big-bags*, com capacidade aproximada entre 150 a 200 kg.

A especificação do fluoreto/bifluoreto de amônio cristalizado, correspondente ao material produzido no *spray dryer*, é mostrada na Tabela 4.

DESCRIÇÃO	ESPECIFICAÇÃO
Aspecto	Pó branco com forte cheiro de amônia
pH Sol. 10%	< 6,5
Concentração em NH ₄ F	20,0 a 62,0%
Concentração em NH ₄ HF ₂	38,0 a 90,0 %
Ferro	$\leq 10 \text{ mg/kg}$
Urânio	\leq 15 mg/kg
Fluorosilicato como (SiO ₂)	$\leq 50 \text{ mg/kg}$
Cloreto	\leq 15 mg/kg
Sulfato	≤10 mg/kg
Densidade relativa (água = 1), a 20°C	\sim 1,01 g/cm ³
Solubilidade em água, a 20°C	820 g/L

Tabela 4 - Especificação do fluoreto/bifluoreto de amônio cristalizado

Fonte: INB - RFAS FCN-II, Rev. 3, capítulo 6.1 a 6.2, jan. 2005

3.4 CONTROLE DO PROCESSO

Para realizar um controle efetivo da planta, é necessário conhecer os parâmetros que realmente influenciam o processo e conhecer a melhor forma de como controlá-los, de maneira a atender os objetivos da planta.

O processo visa produzir o NH_4F / NH_4HF_2 cristalizado, com máxima taxa de produção, operando com um menor consumo de energia.

Para analisarmos e conhecermos melhor o processo, é necessário realizar um balanço de massa e de energia. Uma vez conhecidas as correntes de entrada e de saída do secador, determina-se também a equação que correlaciona o gradiente de temperatura do gás de secagem com a taxa de evaporação de água da solução de NH₄F.

Analisando o consumo de energia da planta, observa-se que o consumo de GLP poderá ser controlado de forma a garantir uma temperatura do ar de secagem (TE_{AR})

suficiente para a realização da secagem, para um menor consumo possível. A temperatura do ar (TE_{AR}) também depende das condições ambientais do ar. Obviamente em um clima seco e quente, obteríamos uma mesma temperatura do ar (TE_{AR}) com um menor consumo de GLP.

Foram monitoradas a temperatura de bulbo seco (T) e a umidade relativa (X^{R}_{o}) do ar ambiente, monitoradas através de um termoigrógrafo colocado junto à Planta de Secagem. Além desses parâmetros, foi monitorado também a temperatura do ar de secagem (TE_{AR}), todos durante um mesmo determinado período de operação, de 18 de março de 2004 a 10 de maio de 2004, conforme APÊNDICES P e R, a fim de determinar uma equação mais próxima do fenômeno real, que correlacionasse a temperatura do gás de secagem (TE_{AR}) com o consumo de combustível requerido no queimador.

No painel de controle do *spray dryer*, há mostradores digitais das temperaturas de ar quente (TE_{AR}) e ar úmido (TS_{AR}). O sensor de temperatura (termopar) que mede a TE_{AR} foi colocado em um ponto imediatamente anterior a entrada do ar na câmara de secagem e o termopar que mede a TS_{AR} foi colocado na saída do ar úmido logo após o ciclone.

A vazão da bomba de alimentação da solução aquosa de fluoreto de amônio (bomba de deslocamento positivo) é garantida através de um variador de freqüência de rotação do motor da bomba, atuado de acordo com a temperatura de saída do ar (ar rico em umidade). No painel de controle da planta não há a indicação direta da vazão de alimentação da bomba, porém há a indicação da freqüência do motor da bomba em percentual. A curva que relaciona a vazão volumétrica da água à 20°C com a freqüência da bomba é fornecida pelo fabricante da bomba, a empresa alemã "Netzsch" e está apresentada no ANEXO B.

Existe ainda um controlador para a alimentação da solução aquosa de fluoreto de amônio para a câmara de secagem. A freqüência de rotação do motor da bomba de alimentação da solução de NH₄F é atuada em função da temperatura de saída do ar úmido (TS_{AR}). Porém o controlador nunca foi utilizado até então. A vazão da bomba era ajustada manualmente a partir da própria experiência do operador e da sua capacidade de observação

da planta, fundamentado na leitura da temperatura de saída do ar úmido (TS_{AR}) mostrada no painel de controle. Um dos objetivos desse trabalho é justamente propor um modelo que correlacione a vazão de alimentação da solução de NH₄F com a temperatura de saída do ar, a partir dos dados coletados da freqüência do motor da bomba de alimentação da solução aquosa de fluoreto de amônio em percentual e da temperatura do ar úmido (TS_{AR}) . Todos os dados foram coletados em um mesmo período de operação da planta, de 18 de março de 2004 a 10 de maio de 2004, conforme o APÊNDICE R.

Baseado nesse modelo proposto, pretende-se fazer o *setup* do controlador, passando este controle para o modo automático, facilitando assim, a operação do *spray dryer* e ainda, reduzindo os erros operacionais.

Em suma, as variáveis de controle do processo são:

- Temperatura do ar quente (TE_{AR});
- Temperatura de saída do ar úmido (TS_{AR}).

As variáveis que podem ser manipuladas a fim de regular as de variáveis de controle, são:

- Vazão de alimentação da solução de NH₄F;
- Vazão de alimentação de GLP.

As variáveis objetivo do processo, são:

- Vazão mássica de pó produzido;
- Eficiência térmica global;
- Vazão de alimentação de GLP.

Durante esse período de coleta de dados, os parâmetros de temperatura do ar quente (TE_{AR}) , temperatura de saída do ar úmido (TS_{AR}) e freqüência em percentual da bomba de

alimentação da solução de fluoreto de amônio, foram monitorados e registrados de hora em hora, 24 horas por dia.

Para uma melhor visualização do macro processo, foram elaborados simuladores do processo de secagem por *spray dryer*, a partir das equações e dados determinados. Eles foram construídos em uma planilha eletrônica de cálculo e mostrados nos APÊNDICES de A a O.

De posse desses simuladores, é mais fácil obter também, as condições operacionais que melhor satisfazem as variáveis objetivo.

3.5 BALANÇO DE MASSA

Para ilustrar o balanço de massa, segue uma representação esquemática, a Figura 17, onde:

F = vazão mássica de alimentação da solução aquosa de NH₄F;

M_{EAR} = vazão mássica de ar quente (gás de secagem);

M_{SAR} = vazão mássica de ar úmido;

 M_N = vazão mássica de NH₄F / NH₄HF₂ / NH₃ que saem junto com o ar úmido, sob a forma gasosa (NH₃) e/ou por arraste pelo *overflow* do ciclone (NH₄F e NH₄HF₂);

 S_{PO} = vazão mássica de pó de NH₄F / NH4HF₂ que sai pelo *underflow* do ciclone;

 Y_{NH4F} = fração mássica de soluto na alimentação;

 Y_{PO} = fração mássica total de sais de fluoreto (NH₄F e NH₄HF₂) no pó produzido;

 Y_N = fração mássica de soluto no vapor produzido, desejado que seja sempre zero, pois não deve haver arraste do soluto com o ar e o vapor.

Figura 17 – Esquema do spray dryer para o balanço de massa

Fazendo o balanço de massa global, obtemos a Equação 15.

 $F + M_{EAR} = M_{SAR} + M_N + S_{PO} \qquad \mbox{Equação 15}$

Como $M_{EAR} = M_{SAR}$, obtém-se a Equação 16.

$$F = M_N + S_{PO}$$
 Equação 16

Logo, o balanço de massa para o componente em questão será dado pela Equação 17.
Como os teores dos sais de fluoreto devem ser zero na corrente de vapor e ar que sai do ciclone, $Y_N = 0$, obtemos a Equação 18.

$$Y_{NH4F}$$
 . F = Y_{PO} . S_{PO} Equação 18

3.6 BALANÇO DE ENERGIA

A Figura 18 é uma representação esquemática de um processo adiabático no qual uma mistura ar-vapor à temperatura TE_{AR} , umidade XE_{AR} , e entalpia h_{EAR} , é misturada a uma solução aquosa de fluoreto de amônio de temperatura TE_{NH4F} e deixada equilibrar. Se não houver líquido suficiente para saturar o gás, o produto base será uma mistura gás-vapor a uma temperatura TS_{AR} , umidade XS_{AR} e entalpia h_{SAR} .

Figura 18 – Esquema do *spray dryer* para o balanço de energia, Blackadder e Nedderman (2004)

Um balanço de massa mostra que o fluxo de líquido no sistema é $XS_{AR} - XE_{AR}$ por unidade de massa de gás inteiramente seco. Um balanço de energia, portanto fornece a Equação 19.

$$h_{SAR} = h_{EAR} + (XS_{AR} - XE_{AR}).c^{L}.(TE_{NH4F} - T_o)$$
 Equação 19

Onde c^{L} é o calor específico do líquido. Substituindo a Equação 9 na 19, obtemos a Equação 20.

$$(XS_{AR} - XE_{AR}) / (TS_{AR} - TE_{NH4F}) = (S_{EAR} - \lambda_{SAR}) + c^{L} (TE_{NH4F} - TS_{AR})$$
 Equação 20

Onde λ_{SAR} é o calor latente na temperatura TS_{AR} , isto é, $\lambda_{SAR} = (c^V - c^L).(TS_{AR} - T_o)$. Desde que para muitas substâncias λ_{SAR}/c^L é grande (550°C no caso da água), sem significativa perda de precisão, desde que TS_{AR} não seja muito diferente de TE_{NH4F} , podemos reescrever a Equação 20, obtendo a Equação 21.

$$(XS_{AR} - XE_{AR}) / (TS_{AR} - TE_{AR}) = -s_{EAR} / \lambda_{SAR}$$
 Equação 21

Se for adicionado mais líquido ao sistema, a mistura ficará saturada e o ponto (TS_{AR} , XS_{AR}) estará na linha da umidade de saturação, onde a temperatura e a umidade serão conhecidas como a temperatura e umidade de saturação adiabáticas, T^{S} e X^{S} . Portanto, todos os estados que tenham a mesma temperatura de saturação adiabática estarão na linha dada pela Equação 22.

$$(X^{S} - X) / (T^{S} - T) = -s / \lambda^{S}$$
 Equação 22

Se uma mistura gás-vapor for equilibrada adiabaticamente com líquido exatamente suficiente, numa temperatura de saturação adiabática, para formar uma mistura saturada, a temperatura resultante será a temperatura de saturação adiabática.

3.6.1 CAPACIDADE EVAPORATIVA

É definida como a quantidade de água (solvente) vaporizada por unidade de tempo no *spray dryer*, expressa normalmente em kg/h.

3.6.2 EFICIÊNCIA TÉRMICA

A eficiência térmica na prática é o termo que se refere a energia necessária para obter um produto seco com as características desejadas.

O projeto do secador *spray* tem por objetivo obter um produto com as características desejadas com máxima eficiência térmica. E esta eficiência é definida como a relação entre a energia utilizada na evaporação e a energia fornecida.

A eficiência térmica aumenta quando se aumenta a temperatura do ar que entra no atomizador ou quando se diminui a temperatura do ar de saída.

A energia fornecida é proporcional à velocidade de evaporação. O ar aquecido entra no atomizador e sua temperatura se reduz, devido à evaporação da água da solução de fluoreto de amônio. Se a câmara é bem isolada, as perdas energéticas serão pequenas e desprezíveis e a diminuição da temperatura do ar pode ser considerada como a que segue uma linha de resfriamento adiabático. A evaporação máxima é obtida quando o ar de saída estiver saturado.

Se o ar que entra no atomizador a temperatura TE_{AR} , proveniente da câmara de combustão, na qual entra a temperatura ambiente T_o , e durante o processo de secagem a temperatura decresce até a temperatura TS_{AR} , a eficiência do processo pode ser expressa pela eficiência térmica global ou pela eficiência evaporativa.

3.6.2.1 EFICIÊNCIA TÉRMICA GLOBAL

É definida como a fração da energia total utilizada na secagem, e pode ser expressa aproximadamente pela Equação 23.

$$\eta_{\text{Tglobal}} = \left[(\text{TE}_{\text{AR}} - \text{TS}_{\text{AR}}) / (\text{TE}_{\text{AR}} - \text{T}_{\text{o}}) \right].100 \qquad \text{Equação 23}$$

Onde TS_{AR} é a temperatura de saída, se a operação é verdadeiramente adiabática.

Pode-se observar que quando são mantidas as condições de saída e ambiental, a eficiência térmica global aumenta rapidamente ao aumentar a temperatura de entrada.

3.6.2.2 EFICIÊNCIA EVAPORATIVA

É definida como a relação entre a capacidade de evaporação real e a capacidade de evaporação máxima (umidade relativa do ar na saída, $X^{R} = 1$). E pode ser expressa aproximadamente como a Equação 24.

$$\eta_{\text{Tevap}} = \left[\left(\text{TE}_{\text{AR}} - \text{TS}_{\text{AR}} \right) / \left(\text{TE}_{\text{AR}} - \text{T}^{\text{S}} \right) \right].100 \qquad \text{Equação } 24$$

Onde T^S é a temperatura de saturação adiabática.

Ainda que, possam ser obtidas temperaturas altas do ar que entra na câmara de atomização, as limitações do aumento de temperatura são:

 Existe um limite máximo para a temperatura do ar de entrada e para valores acima deste, o calor afeta o atomizado causando perda de qualidade do produto; • O custo do ar aquecido pode alcançar um valor máximo em função da temperatura.

4 PARÂMETROS INICIAIS

Os parâmetros de entrada no processo operacional de secagem em *spray dryer* para a solução aquosa de fluoreto de amônio, empregados na planta industrial de secagem da Indústrias Nucleares do Brasil (INB), são descritos na Tabela 5.

Tabela 5 – Parâmetros iniciais de entrada

Parâmetro	Valor
Concentração de entrada da solução de NH ₄ F	$Y_{NH4F} = 12\%$
Percentual de freqüência do motor da bomba de NH ₄ F	$F_{B} > 15\%$
Temperatura de entrada do ar	$TE_{AR} > 150^{\circ}C$
Temperatura de saída do ar	$87^{o}C < TS_{AR} < 100^{o}C$
Velocidade de rotação do disco centrífugo do atomizador	$v_R = 9000 \text{ rpm}$
Vazão do ar	$V_{AR} = 6000 \text{ m}^3/\text{h}$

5 RESULTADOS E DISCUSSÃO

5.1 DETERMINAÇÃO DAS EQUAÇÕES PARA A TAXA DE EVAPORAÇÃO DA ÁGUA, CONSUMO DE GLP E EFICIÊNCIA TÉRMICA, A PARTIR DOS DADOS FORNECIDOS PELO FABRICANTE DO EQUIPAMENTO

A partir dos dados fornecidos pelo fabricante do *spray dryer*, mostrados na Tabela 6, a empresa argentina "Galaxie", foram obtidos os gráficos da taxa de secagem (capacidade evaporativa) pelo gradiente de temperatura do ar de secagem e do consumo de combustível em função da temperatura de ar quente (TE_{AR}). Foram determinadas também as equações que melhor representam essas curvas (coeficiente de correlação próximo de 1) para o intervalo de dados empregados.

Temperatura	a do ar (°C)	ΔT do ar (°C)	Evaporação da água (kg/h)	Consumo de Combustível (kcal/h)
Entrada	Saída			
550	100	450	800	795000
450	100	350	640	645000
350	100	250	470	495000
250	100	150	290	345000
220	90	130	250	300000
180	80	100	190	240000

Tabela 6 – Especificações técnicas do spray dryer fornecidas pelo fabricante

Fonte: Galaxie, Manual de operação e manutenção da planta secador spray, nov. 2000

A curva da capacidade evaporativa em função da diferença de temperatura do ar de secagem, a partir dos dados da Tabela 6, está representada na Figura 19.

Figura 19 – Capacidade evaporativa em função da diferença de temperatura do gás de secagem, a partir dos dados gerais do fabricante, onde "y" corresponde a capacidade evaporativa em kg/h e "x" corresponde à diferença de temperatura do ar em $^{\circ}C$

A taxa de consumo de combustível em função da temperatura do ar de entrada na câmara de secagem (TE_{AR}), a partir dos dados da Tabela 6, está representada na Figura 20.

Figura 20 – Taxa de consumo de combustível em função da temperatura de entrada do gás de secagem (TE_{AR}), a partir dos dados gerais do fabricante, onde "y" corresponde a taxa de consumo de combustível em kcal/h e "x" corresponde a temperatura do ar quente em °C (TE_{AR})

Temperatura do ar Taxa de consumo Custo de GLP de entrada (°C) (R\$/h)** de GLP (kg/h)* 550 67,9 184,8 450 55,1 149,9 42,3 350 115,1 250 29,5 80,2 220 25,6 69,7 180 20.5 55,8 *considerando poder calorífico do GLP = 11700 kcal/ kg

Tabela 7 – Especificações sobre o consumo e o custo de GLP para a operação do *spray dryer*, a partir dos dados do fabricante

Como o combustível que alimenta o queimador é o gás liquefeito de petróleo (GLP)

e considerando o seu poder calorífico igual a 11700 kcal/kg (PERRY e GREEN, 1997),

obteve-se o consumo de GLP em termos de vazão mássica. Considerando também, o custo do

GLP, para o consumidor, de R\$ 2,72/kg, segundo a pesquisa realizada no município de

Resende no período de 25 de fevereiro de 2007 a 03 de março de 2007, pela Agência

Nacional de Petróleo (ANP) $[...]^2$, foram obtidos os dados mostrados na Tabela 7 e os gráficos

do consumo e do custo de GLP pela temperatura de ar quente de secagem (TE_{AR}).

A t	axa de consui	no de GLP e	m função d	a temperatura	do ar de	entrada na	câmara de
secagem (TE	c _{AR}), a partir o	los dados do	fabricante,	está represent	ada na Fi	gura 21.	

**considerando o custo do GLP = R\$ 2,72/kg (ANP, 2007)

(PERRY e GREEN, 1997)

Figura 21 – Taxa de consumo de GLP em função da temperatura de entrada do gás de secagem (TE_{AR}), a partir dos dados gerais do fabricante, onde "y" corresponde à taxa de consumo de GLP em kg/h e "x" corresponde à temperatura do ar quente em °C (TE_{AR})

O custo de GLP em função da temperatura do ar de entrada na câmara de secagem (TE_{AR}), a partir dos dados do fabricante, está representado na Figura 22.

Figura 22 – Custo de GLP em função da temperatura de entrada do gás de secagem (TE_{AR}), a partir dos dados gerais do fabricante, onde "y" corresponde ao custo de GLP em R\$/h e "x" corresponde à temperatura do ar quente em °C (TE_{AR})

A partir da Equação 25, calculou-se a eficiência térmica global do *spray dryer*, considerando-se para isto, os dados de temperatura inicial e final do ar conforme a Tabela 6 e a temperatura ambiente de 25°C. Os valores obtidos estão mostrados na Tabela 8.

ΔT do ar (°C)	Eficiência térmica global (%)*	Taxa de consumo de GLP (kg/h)**		
450	85,7	67,9		
350	82,4	55,1		
250	76,9	42,3		
150	66,7	29,5		
130	66,7	25,6		
100	64,5	20,5		
* para $T_0 = 25 ^{\circ}C$				
** considerando o poder calorífico do GLP = 11700 kcal/kg				
(PERRY e GREEN, 1997)				

Tabela 8 – Especificações sobre a eficiência térmica global para o *spray dryer*, a partir dos dados do fabricante

A partir desses dados, foi determinada a relação entre a eficiência térmica global e a quantidade de GLP consumido, mostrada na Figura 23.

Figura 23 – Eficiência térmica global em função do consumo de GLP, a partir dos dados gerais do fabricante, onde "y" corresponde a eficiência térmica global em % e "x" corresponde ao consumo de GLP em kg/h

Determinando a primeira derivada da equação obtida para a curva da Figura 23 e fazendo a primeira derivada (y') igual a zero, obtemos o valor para "x" de 106,0 kg/h, o qual representa o valor de consumo de GLP para a eficiência térmica global máxima. Substituindo o valor de "x" por 106,0 kg/h na equação, encontramos o valor de 91,8 % para a eficiência térmica global máxima.

Logo, observamos que o consumo de GLP é muito alto para atingirmos esta eficiência térmica global, tornando inclusive o processo inviável economicamente.

Além disso, na prática, a eficiência térmica do processo de secagem por *spray dryer*, em geral, varia em torno de 65 a 70% de acordo com Marshall (1955), o que representa um consumo de GLP de 23 a 32 kg/h de acordo com a curva da Figura 23, que representa uma faixa de consumo de GLP dentro do esperado para o *spray dryer* ao compararmos com a média verificada na prática (30 kg/h), a partir da razão entre a variação do nível do tanque de estocagem de GLP e o intervalo de tempo que esta variação ocorreu.

5.2 DETERMINAÇÃO DA EQUAÇÃO DE CONSUMO DE GLP, A PARTIR DE DADOS COLETADOS NA PLANTA

A taxa de consumo de GLP está associado com a temperatura de entrada do ar quente na câmara de secagem. A energia produzida pela combustão do GLP é destinada a produção de ar quente e seco na saída do aquecedor do ar, a partir do ar ambiente alimentado. Logo, foi determinada uma equação que relaciona o consumo de GLP com a temperatura desejada na entrada de ar da câmara de secagem, a partir dos dados de entrada das correntes envolvidas nos balanços de massa e energia do aquecedor de ar.

Para obter a equação, partiu-se de algumas considerações:

- A umidade absoluta é constante durante todo o aquecimento.
- O poder calorífico do GLP (Q_{GLP}) é igual a 11700 kcal/kg (PERRY e GREEN, 1997).
- Não há perdas de energia.
- A vazão de ar de secagem (V_{AR}) é constante e igual a 6000 m³/h (GALAXIE, 2000).
- O custo do GLP (C_{GLP}) é igual a R\$ 2,72/kg (ANP, 2007).

No período entre 18 de março a 10 de maio de 2004, foram monitoradas durante todos os dias, 24h/dia, a temperatura e a umidade relativa do ar, com o auxílio de um termoigrógrafo colocado próximo ao equipamento de secagem. Os valores eram coletados a cada hora do dia. Observou-se que para esse intervalo de tempo, não houve variações significativas na temperatura ambiente, apresentando uma média de 25°C com desvio padrão de 1°C. A umidade relativa do ar apresentou uma média de 74% com desvio padrão de 5% (estes dados estão descritos no APÊNDICE P). Logo, para a simplificação dos cálculos,

consideraram-se estas médias também como valores constantes. Isto é aceitável para a determinação do estado termodinâmico do ar através da carta psicrométrica, visto que não há variações significativas entre os pontos de ordenadas obtidos (temperatura e umidade relativa) na carta psicrométrica, dento das faixas dos desvios das médias apresentados. Logo, através da consulta da carta psicrométrica, mostrada no ANEXO A, para as condições iniciais de $T_o = 25^{\circ}$ C e $X_o^R = 74\%$, tem se que:

- Entalpia do ar ambiente $(h_o) = 63 \text{ kJ/kg}$ de ar seco;
- Volume úmido (Vu) = 0,86 m³/kg de ar seco;
- Umidade absoluta (X) = 0,015 kg/kg ar seco.

Com o auxílio novamente da carta psicrométrica e considerando a umidade absoluta constante durante o aquecimento em 0,015kg/kg de ar seco, determinou-se o estado termodinâmico do ar na saída do aquecedor para uma faixa de temperatura (TE_{AR}) entre 25°C a 119°C, obtendo valores de entalpia (h_{EAR}) respectivamente entre 63 a 167 kJ/kg de ar seco. Estimou-se a energia adicionada ao ar, fazendo a diferença entre as entalpias do ar respectivamente, entre a saída e a entrada no aquecedor. Ao multiplicarmos pelo volume úmido inicial e pela vazão de ar e dividirmos pelo poder calorífico do GLP, obtemos o consumo mássico horário de GLP. Ainda, ao multiplicarmos o consumo pelo seu custo unitário, obtemos o custo horário de GLP. Tais valores estão mostrados na Tabela 9.

TE _{AR} (°C)	h _{EAR} (kJ/kg ar seco)	Q _{adicionado} (h _{EAR} – h _o) em kJ/kg ar seco	kJ/m ³ de ar úmido inicial (Q _{adicionado} /Vu)	kcal/h de combustível ((Q _{adicionado} /Vu)* V _{AR})	Consumo de GLP em kg/h ((Q _{adicionado} /V _U)* V _{AR} /Q _{GLP})	Custo do GLP em R\$/h ((Q _{adicionado} /V _U)* V _{AR*} C _{GLP} /Q _{GLP})
25	63	0	0,0	0,0	0,00	0,00
26	65	2	2,3	3323,1	0,28	0,77
29	69	6	7,0	9969,2	0,85	2,32
33	72	9	10,4	14953,8	1,28	3,48
37	77	14	16,2	23261,5	1,99	5,41
41	81	18	20,9	29907,7	2,56	6,95
45	85	22	25,5	36553,8	3,12	8,50
49	90	27	31,3	44861,5	3,83	10,43
54	95	32	37,1	53169,2	4,54	12,36
58	100	37	42,9	61476,9	5,25	14,29
64	106	43	49,9	71446,1	6,11	16,61
69	111	48	55,7	79753,8	6,82	18,54
74	117	54	62,6	89723,0	7,67	20,86
80	123	60	69,6	99692,2	8,52	23,18
86	129	66	76,5	109661,4	9,37	25,49
92	136	73	84,6	121292,2	10,37	28,20
98	143	80	92,8	132922,9	11,36	30,90
105	151	88	102,0	146215,2	12,50	33,99
112	158	95	110,1	157846,0	13,49	36,70
119	167	104	120,6	172799,8	14,77	40,17

Tabela 9 – Determinação da taxa de consumo e do custo de GLP a partir da determinação do estado termodinâmico para a corrente de ar quente que sai do aquecedor de ar, a partir dos dados coletados na planta

A partir dos dados tabelados, plotaram-se os gráficos da taxa de consumo e de custo de GLP em função da temperatura do ar de entrada no atomizador, conforme as Figuras 24 e 25, respectivamente.

Figura 24 – Taxa de consumo de GLP em função da temperatura de entrada de ar quente (TE_{AR}), a partir da determinação do estado termodinâmico do ar de entrada na câmara de secagem, a partir de dados coletados na planta, onde "y" corresponde ao consumo de GLP em kg/h e "x" corresponde à temperatura de entrada de ar quente em °C

Figura 25 – Custo de GLP em função da temperatura de entrada de ar quente (TE_{AR}), a partir da determinação do estado termodinâmico do ar de entrada na câmara de secagem, a partir de dados coletados na planta, onde "y" corresponde ao custo de GLP em R\$/h e "x" corresponde à temperatura de entrada de ar quente em °C

A equação obtida para o consumo de GLP é satisfatoriamente válida na prática, visto que o consumo de GLP, que também foi monitorado regularmente como rotina operacional da planta, através da medição da variação do nível dos tanques de estocagem de GLP em determinados intervalos de tempo, resultou em um valor próximo de 30 kg/h, o que de acordo com a equação, teríamos uma temperatura de entrada de trabalho de 220°C, que é uma temperatura de entrada dentro da faixa de trabalho do secador.

Comparando as curvas das Figuras 21 e 24, referentes ao consumo de GLP em função da temperatura de entrada do ar quente na câmara de secagem, obtemos a Figura 26.

Figura 26 – Comparação entre as curvas da taxa de consumo de GLP em função da temperatura de entrada de ar quente (TE_{AR}). Uma foi obtida a partir de dados do fabricante Galaxie e a outra foi obtida a partir da determinação do estado termodinâmico do ar de entrada na câmara de secagem, onde "y" corresponde à taxa de consumo de GLP em kg/h e "x" corresponde à temperatura de entrada de ar quente em °C

As curvas da Figura 26 possuem coeficientes angulares próximos, ou seja, são razoavelmente paralelas dentro da faixa de operação. Porém a curva obtida a partir dos dados coletados na planta de secagem possui um coeficiente linear maior, apresentando portanto, uma maior taxa de consumo de GLP para uma mesma temperatura de ar quente (TE_{AR}).

5.3 DETERMINAÇÃO DA CAPACIDADE EVAPORATIVA DO *SPRAY DRYER*, A PARTIR DE DADOS COLETADOS NA PLANTA

Considerando o processo de secagem como sendo um processo adiabático conforme o sistema da Figura 18 e utilizando a Equação 21 do balanço de energia apresentado, tem-se que:

$$(XS_{AR} - XE_{AR}) / (TS_{AR} - TE_{AR}) = -s_{EAR} / \lambda_{SAR}$$

A partir desta equação, determinamos XS_{AR} em função de TS_{AR} . Para isso, consideraram-se os dados de entrada da Tabela 10.

Dados de Entrada:		
1 kJ =	0,2388	kcal
Poder Calorífico do GLP (Q_{GLP}) =	11700	kcal/kg
Vazão de Ar de Secagem $(V_{AR}) =$	6000	m ³ /h
Temp. do Ar Ambiente $(T_o) =$	298	K
Umidade relativa ambiente $(X^{R}o) =$	74	%
Volume úmido (Vu) =	0,86	m ³ /kg ar seco
Calor específico do ar $(c^G) =$	1	kJ/K.kg
Calor específico do vapor $(c^V) =$	1,92	kJ/K.kg
Calor específico da sol. $NH_4F(c^L) =$	4,18	kJ/kg.K
Calor específico úmido (s) =	$\mathbf{c}^{\mathrm{G}} + \mathrm{X.c}^{\mathrm{V}}$	kJ/kg.K
Calor latente da água (λ_0) =	2479	kJ/kg
$XE_{AR} =$	0,015	kg água/kg ar seco
$h_{EAR} =$	f(TE _{AR})	
$TE_{NH4F} =$	298	K
$XS_{AR} =$	$f(\Delta T)$	

Tabela 10 – Dados de entrada para o cálculo da capacidade evaporativa do spray dryer

E substituindo os dados de entrada na Equação 21, obtemos a Equação 25.

$$XS_{AR} = (\Delta T/2409,603) + 0,015$$
 Equação 25

Sendo ΔT a diferença de temperatura entre a de entrada (TE_{AR}) e a de saída (TS_{AR}). Foram atribuídos valores de ΔT dentro da faixa de operação do secador e calculou-se a umidade XS_{AR} para cada valor de ΔT . Calculou-se também a taxa de água vaporizada para cada ΔT empregado. Fez-se a diferença entre a umidade absoluta na saída do secador (rica em umidade) com a umidade absoluta da entrada (pobre em umidade). Para determinar a taxa de evaporação em unidade de massa por tempo, multiplicou-se o gradiente da umidade absoluta pela vazão volumétrica do ar e dividiu-se pelo seu volume úmido. Estes valores estão apresentados na Tabela 11.

$\Delta T (^{\circ}C)$	XS_{AR}	Taxa água vaporizada (XSup - XEup)*Vup/Vu em kg/h
100	<u>(\(\Delta\)</u> (\(\Delta\)) + 0,013	$(AS_{AR} - AL_{AR}) = V_{AR} + u \operatorname{cm} \operatorname{kg/m}$
100	0,057	288,70
118	0,064	340,67
135	0,071	389,74
151	0,078	435,94
165	0,083	476,35
179	0,089	516,77
191	0,094	551,42
202	0,099	583,17
211	0,103	609,16
219	0,106	632,25
226	0,109	652,46
232	0,111	669,78
236	0,113	681,33
242	0,115	698,65

Tabela 11 – Umidade absoluta da mistura gasosa na saída do secador e taxa de água vaporizada calculadas para vários valores de ΔT

A partir desses dados, plotou-se o gráfico da taxa de água vaporizada em função de ΔT mostrado na Figura 27.

Figura 27 – Capacidade evaporativa do *spray dryer* em função de ΔT , a partir de dados reais da planta de secagem, onde "y" corresponde à capacidade evaporativa em kg/h e "x" corresponde à diferença de temperatura entre a entrada e a saída de ar no *spray dryer*, em °C

As taxas de evaporação de água fornecidas pelo fabricante (Figura 19) e a calculada a partir de dados reais (Figura 27), são mostradas em um mesmo gráfico, conforme a Figura 28.

Figura 28 – Capacidade evaporativa do *spray dryer* em função de ΔT , a partir de dados fornecidos pelo fabricante e de dados reais da planta de secagem, onde "y" corresponde à capacidade evaporativa em kg/h e "x" corresponde à diferença de temperatura entre a entrada e a saída de ar no *spray dryer*, em °C

Através da Figura 28, observa-se que a equação para a capacidade evaporativa, a partir de dados reais da planta de secagem apresenta uma maior capacidade de evaporação para uma mesma diferença de temperatura do ar de secagem.

O principal motivo da diferença entre as curvas, se deve ao fato da curva obtida a partir de dados fornecidos pelo fabricante ser mais abrangente do que a outra curva, que foi obtida a partir de dados de uma planta específica de secagem (*spray dryer* Galaxie, modelo 3530). A primeira pode ser aplicada para outros modelos de secador da Galaxie conforme o manual do fabricante (GALAXIE, 2000), só que justamente por isso, há pouca precisão nos resultados. Enquanto que a segunda foi determinada restritamente para as condições do modelo de spray dryer desse trabalho, tendo esta, portanto, melhor precisão em seus resultados.

5.4 EQUAÇÃO DE CONVERSÃO DO PERCENTUAL DA FREQÜÊNCIA DE ROTAÇÃO DO MOTOR DA BOMBA DE ALIMENTAÇÃO DA SOLUÇÃO AQUOSA DE FLUORETO DE AMÔNIO EM VAZÃO MÁSSICA

Considerando a curva que relaciona a vazão volumétrica da água a 20°C com a freqüência do motor da bomba fornecida pelo fabricante, a empresa alemã Netzsch, mostrada no ANEXO B, e admitindo a massa específica da água igual a 1 kg/dm³ e para a pressão igual a 0 bar, ou seja trabalhando com aspiração afogada, foi construído um gráfico prático que relaciona o percentual da freqüência máxima de trabalho da bomba (indicado no painel de controle da planta) com a vazão mássica de solução aquosa de fluoreto de amônio alimentado.

Este percentual é a freqüência normalizada do motor da bomba, ou seja, a faixa de freqüência de trabalho que varia de 0 a 2000 min⁻¹, corresponde a faixa de operação de 0 a 100%.

Para a determinação da correlação entre o percentual da freqüência da bomba e a vazão mássica da solução aquosa de fluoreto de amônio alimentada, considerou-se também que a densidade relativa a 20°C para a solução aquosa de fluoreto de amônio a 12% (PERRY e GREEN, 1997) corresponde a 1,05. Esses dados estão mostrados no APÊNDICE Q e o referido gráfico está apresentado na Figura 29.

Figura 29 – Vazão mássica de alimentação da solução aquosa de fluoreto de amônio em função do percentual de freqüência do motor da bomba, obtida a partir da curva de trabalho da bomba fornecida pelo fabricante, no ANEXO B, onde "y" corresponde à vazão mássica de alimentação da solução aquosa de fluoreto de amônio em kg/h e "x" corresponde ao percentual de freqüência do motor da bomba, em %

5.5 MODELO PROPOSTO DE OPERAÇÃO DA BOMBA DE ALIMENTAÇÃO DA SOLUÇÃO AQUOSA DE FLUORETO DE AMÔNIO

Para propor um modelo que correlacione a vazão de alimentação da solução aquosa de fluoreto de amônio com a temperatura de saída do ar, foram coletados os dados da freqüência do motor da bomba de alimentação da solução aquosa de fluoreto de amônio em percentual e da temperatura do ar úmido (TS_{AR}), em um mesmo período de operação da

planta, de 18 de março de 2004 a 10 de maio de 2004. Durante este período, a planta foi operada de forma contínua em 3 turnos de 8 horas, 24h por dia. Foram registrados um total de 608 dados para cada parâmetro, as temperaturas de entrada e saída de ar, e o percentual da freqüência de trabalho da bomba, que são os três parâmetros que podem ser monitorados pelo painel de controle da planta.

A vazão da bomba era ajustada manualmente a partir da própria experiência do operador e da sua capacidade de observação da planta, fundamentado na leitura da temperatura de saída do ar úmido (TS_{AR}) mostrada no painel de controle.

Após a coleta desses dados, foi realizada a clivagem dos pontos extremos, ou seja, pontos fora dos limites de operação de mínimo e máximo para a temperatura de saída de ar, no qual foram atribuídos os valores de 87°C e 100°C, respectivamente. Pois foi visto, através dos históricos de registros de operação da planta (livros de operação) do *spray dryer* que ao se trabalhar com valores inferiores e superiores a essa faixa de trabalho, há a ocorrência de uma quantidade muito alta de umidade no pó para temperaturas mais baixas e uma baixa eficiência térmica para temperaturas mais altas. Descartaram-se também pontos de percentual de freqüência do motor da bomba abaixo de 15%, pois para percentuais menores que este valor, a vazão de alimentação de fluoreto de amônio torna-se muito baixa e conseqüentemente, a produtividade seria muito baixa. Após a clivagem dos pontos, a quantidade de dados passou a ser 525.

Foi determinada então a média do percentual de freqüência da bomba correspondente a cada valor de temperatura de saída do ar, para a faixa de 87°C a 100°C, variando de uma em uma unidade, conforme é mostrado na Tabela 12.

Temperatura de saída do ar úmido - TS _{AR} (°C)	Média do % freqüência motor da bomba de alim. de NH ₄ F	Total de Observações
87	23	4
88	23	5
89	24,1	9
90	24,1	31
91	24,5	23
92	24,9	41
93	25,3	54
94	25,8	77
95	25,3	59
96	25,7	49
97	25,8	55
98	25,8	47
99	25,9	31
100	25,9	40
		525

Tabela 12 – Média do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma determinada temperatura de saída de ar (TS_{AR})

Para avaliarmos se a quantidade de dados coletados sobre o percentual da freqüência do motor da bomba para cada valor de temperatura de saída do ar úmido (TS_{AR}) é suficiente para validar o valor da média do parâmetro analisado, foi determinado o tamanho mínimo de amostra do percentual da freqüência do motor da bomba para cada valor de temperatura de saída do ar úmido (TS_{AR}), para uma precisão de 1% e um intervalo de confiança de 95% para a média, a partir da distribuição de Student conforme Neto *et al.* (2003), mostrada no ANEXO C.

Os valores encontrados estão mostrados nas Tabelas 13 a 26.

N^{o} observações (TS _{AR} =87)	Freqüência Relati	iva % freqüência alim.
3	0,750	22
1	0,250	25
4	1,000	
Média =	23	0⁄0
Graus de Liberdade =	3	
Variância =	1,875	
Desvio Padrão =	1,369	%
$T_3 (p/95\% \text{ de conf.}) =$	3,182	
Interv. Confiança (95%) =		$21 < \mu < 25$
Precisão Desejada =	1	%
Tamanho mín. amostra =	7	Não é significativo

Tabela 13 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 87 °C

Tabela 14 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 88 °C

N ^o observações (TS _{AR} =88)	Freqüência Relati	iva % freqüência alim.
4	0,800	22
1	0,200	25
5	1,000	
Média =	23	%
Graus de Liberdade =	4	
Variância =	1,530	
Desvio Padrão =	1,237	%
$T_4 (p/95\% \text{ de conf.}) =$	2,776	
Interv. Confiança (95%) =		$21 < \mu < 24$
Precisão Desejada =	1	%
Tamanho mín. amostra =	6	Não é significativo

N° observações (TS _{AR} =89)	Freqüência Relati	iva % freqüência alim.
5	0,556	22
1	0,111	25
1	0,111	26
2	0,222	28
9	1,000	
Média =	24,1	%
Graus de Liberdade =	8	
Variância =	2,992	
Desvio Padrão =	1,730	%
$T_8 (p/95\% \text{ de conf.}) =$	2,306	
Interv. Confiança (95%) =		$23 < \mu < 25$
Precisão Desejada =	1	%
Tamanho mín. amostra =	11	Não é significativo

Tabela 15 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 89 °C

Tabela 16 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 90 °C

N° observações (TS _{AR} =90)	Freqüência Relativ	va %	freqüência alim.
1	0,032		15
1	0,032		18
2	0,065		20
7	0,226		22
2	0,065		23
7	0,226		25
3	0,097		26
2	0,065		27
6	0,194		28
31	1,000		
Média =	24,1	%	
Graus de Liberdade =	30		
Variância =	5,708		
Desvio Padrão =	2,389	%	
$T_{30} (p/95\% \text{ de conf.}) =$	2,042		
Interv. Confiança (95%) =	2	$23 < \mu < 2$.5
Precisão Desejada =	1	%	
Tamanho mín. amostra =	22		Significativo

N ^o observações (TS _{AR} =91)	Freqüência Relati	va % freqüência	a alim.
2	0,087	20	
5	0,217	22	
2	0,087	23	
1	0,043	24	
6	0,261	25	
1	0,043	26	
1	0,043	27	
4	0,174	28	
1	0,043	29	
23	1,000		
Média =	24,5	%	
Graus de Liberdade =	22		
Variância =	3,186		
Desvio Padrão =	1,785	%	
$T_{22} (p/95\% \text{ de conf.}) =$	2,074		
Interv. Confiança (95%) =	2	$24 < \mu < 25$	
Precisão Desejada =	1	%	
Tamanho mín. amostra =	12	Significat	tivo

Tabela 17 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 91 °C

N^{o} observações (TS _{AR} =92)	Freqüência Relati	va % freqüência alim.
1	0,024	15
2	0,049	20
1	0,024	22
3	0,073	23
5	0,122	24
17	0,415	25
2	0,049	26
3	0,073	27
6	0,146	28
1	0,024	29
41	1,000	
Média =	24,9	%
Graus de Liberdade =	40	
Variância =	4,174	
Desvio Padrão =	2,043	%
$T_{40} (p/95\% \text{ de conf.}) =$	2,021	
Interv. Confiança (95%) =	~	$24 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	16	Significativo

Tabela 18 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 92 °C

N° observações (TS _{AR} =93)	Freqüência Relat	tiva % freqüência alim.
1	0,019	16
1	0,019	18
2	0,037	20
2	0,037	22
3	0,056	23
8	0,148	24
16	0,296	25
2	0,037	26
1	0,019	27
15	0,278	28
3	0,056	29
54	1,000	
Média =	25,3	%
Graus de Liberdade =	53	
Variância =	3,949	
Desvio Padrão =	1,987	%
$T_{53} (p/95\% \text{ de conf.}) =$	2,005	
Interv. Confiança (95%) =		$25 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	15	Significativo

Tabela 19 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 93 °C

N^{o} observações (TS _{AR} =94)	Freqüência Relat	iva % freqüência alim.
1	0,013	18
1	0,013	20
3	0,039	22
1	0,013	23
10	0,130	24
25	0,325	25
11	0,143	26
3	0,039	27
14	0,182	28
8	0,104	29
54	1,000	
Média =	25,8	⁰∕₀
Graus de Liberdade =	76	
Variância =	1,786	
Desvio Padrão =	1,336	%
$T_{76} (p/95\% \text{ de conf.}) =$	1,995	
Interv. Confiança (95%) =		$25 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	7	Significativo

Tabela 20 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 94 °C

N° observações (TS _{AR} =95)	Freqüência Relativ	a % freqüência alim.
3	0,051	20
2	0,034	22
1	0,017	23
10	0,169	24
22	0,373	25
6	0,102	26
3	0,051	27
9	0,153	28
3	0,051	29
59	1,000	
Média =	25,3	%
Graus de Liberdade =	58	
Variância =	1,215	
Desvio Padrão =	1,102	%
$T_{58} (p/95\% \text{ de conf.}) =$	2,000	
Interv. Confiança (95%) =	25 <	$<\mu$ (%) < 26
Precisão Desejada =	1	%
Tamanho mín. amostra =	5	Significativo

Tabela 21 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 95 °C

N° observações (TS _{AR} =96)	Freqüência Relativ	a % freqüência alim.
3	0,061	22
1	0,020	23
4	0,082	24
23	0,469	25
4	0,082	26
1	0,020	27
10	0,204	28
3	0,061	29
49	1,000	
Média =	25,7	%
Graus de Liberdade =	48	
Variância =	0,880	
Desvio Padrão =	0,938	%
$T_{48} (p/95\% \text{ de conf.}) =$	2,010	
Interv. Confiança (95%) =	2:	$5 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	3	Significativo

Tabela 22 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de $\rm NH_4F$ para uma temperatura de saída de ar úmido ($\rm TS_{AR}$) de 96 °C

Nº observações (TS _{AR} =97)	Freqüência Relati	va % freqüência alim.
2	0,036	23
7	0,127	24
22	0,400	25
9	0,164	26
2	0,036	27
10	0,182	28
3	0,055	29
55	1,000	
Média =	25,8	%
Graus de Liberdade =	54	
Variância =	0,524	
Desvio Padrão =	0,724	%
$T_{54} (p/95\% \text{ de conf.}) =$	2,005	
Interv. Confiança (95%) =	2	$26 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	2	Significativo

Tabela 23 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 97 °C

N° observações (TS _{AR} =98)	Freqüência Relativ	va % freqüência alim.
3	0,064	23
4	0,085	24
18	0,383	25
8	0,170	26
3	0,064	27
9	0,191	28
2	0,043	29
47	1,000	
Média =	25,8	%
Graus de Liberdade =	46	
Variância =	0,613	
Desvio Padrão =	0,783	%
$T_{46} (p/95\% \text{ de conf.}) =$	2,010	
Interv. Confiança (95%) =	2	$6 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	2	Significativo

Tabela 24 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 98 °C

N° observações (TS _{AR} =99)	Freqüência Relativ	va % freqüência alim.
1	0,032	20
2	0,065	22
1	0,032	23
3	0,097	24
8	0,258	25
1	0,032	26
2	0,065	27
13	0,419	28
31	1,000	
Média =	25,9	%
Graus de Liberdade =	30	
Variância =	1,124	
Desvio Padrão =	1,060	%
$T_{30} (p/95\% \text{ de conf.}) =$	2,042	
Interv. Confiança (95%) =	2	$6 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	4	Significativo

Tabela 25 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma temperatura de saída de ar úmido (TS_{AR}) de 99 °C
N° observações (TS _{AR} =100)	Freqüência Relat	iva % freqüência alim.
5	0,125	22
3	0,075	24
11	0,275	25
3	0,075	26
3	0,075	27
15	0,375	28
40	1,000	
Média =	25,9	%
Graus de Liberdade =	39	
Variância =	0,648	
Desvio Padrão =	0,805	%
$T_{39} (p/95\% \text{ de conf.}) =$	2,021	
Interv. Confiança (95%) =		$26 < \mu < 26$
Precisão Desejada =	1	%
Tamanho mín. amostra =	2	Significativo

Tabela 26 – Avaliação do tamanho mínimo de amostra do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma temperatura de saída de ar úmido (TS_{AR}) de 100 °C

Com base na análise do tamanho mínimo de amostra, foram descartados os pontos médios do percentual de freqüência do motor da bomba para as temperaturas de saída de ar úmido (TS_{AR}) de 87, 88 e 89 °C, conforme os resultados mostrados nas Tabelas 13, 14 e 15. Logo, a tabela que melhor representa a relação entre média do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F para uma determinada temperatura de saída de ar (TS_{AR}) é mostrada na Tabela 27.

Temperatura de saída do ar úmido - TS_{AR} (°C)	Média do % freqüência motor da bomba de alim. de NH ₄ F	Total de Observações
90	24,1	31
91	24,5	23
92	24,9	41
93	25,3	54
94	25,8	77
95	25,3	59
96	25,7	49
97	25,8	55
98	25,8	47
99	25,9	31
100	25,9	40
		507

Tabela 27 – Média do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH_4F para uma determinada temperatura de saída de ar (TS_{AR}), após a análise do tamanho mínimo de amostra

Elaborou-se então o gráfico que melhor se aproxima dos dados obtidos, mostrado na

Figura 30.

Figura 30 – Curva do percentual de freqüência de rotação do motor da bomba de alimentação da solução de NH₄F em função da temperatura de saída de ar úmido, obtida a partir de dados reais de operação manual do *spray dryer*, onde "y" corresponde ao percentual de freqüência de rotação do motor da bomba de alimentação da solução aquosa de fluoreto de amônio em % e "x" corresponde à temperatura de saída de ar úmido, em °C

Observa-se na Figura 30, que quando é aumentada a temperatura de ar úmido na saída do *spray dryer*, há um aumento no percentual da freqüência de rotação do motor da bomba de alimentação da solução de NH₄F. Porém a freqüência de rotação do motor da bomba tende a estabilizar em 25,8% a partir de uma determinada temperatura, em torno de 98°C. Isto se deve ao fato de termos atingido o limite da capacidade de operação da bomba, o que corresponde ao bombeamento de aproximadamente 500 kg/h de solução aquosa de fluoreto de amônio, de acordo com a equação da reta da Figura 29.

5.6 SIMULADORES DA PLANTA DE SECAGEM

A partir das seguintes equações determinadas:

- a equação que converte o percentual da freqüência do motor da bomba de alimentação da solução aquosa de fluoreto de amônio em vazão mássica da solução;
- a equação que relaciona a temperatura de entrada de ar quente com o consumo de GLP;
- a equação que relaciona a temperatura de saída do ar úmido com o percentual da freqüência do motor da bomba de alimentação da solução aquosa de fluoreto de amônio;
- as equações dos balanços de massa e de energia para o spray dryer;

foram elaboradas, em planilhas eletrônicas de cálculos, simulações da planta de secagem por *spray dryer*, utilizando os melhores valores de cada parâmetro manipulável, para cada temperatura de saída de ar úmido (variável de resposta), dentro da faixa de operação do secador (87°C a 100°C). As referidas simulações otimizadas para cada temperatura de saída estão mostradas nos APÊNDICES de A a O.

A partir dos resultados das simulações, foi construída uma tabela mostrando todos os parâmetros de operação adequados para cada temperatura de saída do ar úmido empregado (Tabela 28). A partir desta tabela, podem-se também obter as melhores condições de operação do *spray dryer*, a partir dos valores obtidos para a vazão mássica de pó produzido, para a eficiência térmica global e para o consumo de GLP. Os melhores valores para os parâmetros de operação do *spray dryer* serão aqueles que fornecerem uma maior vazão mássica de pó produzido e maior eficiência térmica global, com um menor consumo de GLP.

TE _{AR} (°C)	TS_{AR} (°C)	Eficiência Térmica Global (η)	Taxa de consumo GLP (kg/h)	Custo GLP (R\$/h)	Pó produzido (kg/h)
224	87	68,8	30,80	73,3	52,45
228	88	68,9	31,40	74,7	54,19
232	89	69,0	32,00	76,2	55,02
235	90	69,0	32,50	77,4	56,83
238	91	69,0	33,00	78,5	57,73
241	92	69,0	33,50	79,7	57,72
244	93	68,9	33,90	80,7	58,69
246	94	68,8	34,30	81,6	58,75
248	95	68,7	34,60	82,3	59,78
250	96	68,5	34,90	83,1	59,90
252	97	68,3	35,20	83,8	59,12
253	98	68,0	35,30	84,0	61,19
254	99	67,7	35,50	84,5	60,47
255	100	67,4	35,60	84,7	60,73

Tabela 28 – Resultados obtidos nas simulações de secagem por *spray dryer* para cada valor de temperatura de saída de ar úmido empregado

Com os dados obtidos, foram construídos os gráficos de performance de cada simulação, com base em cada variável objetivo (eficiência térmica global, taxa de consumo de GLP e taxa de produção de pó).

Figura 31 – Eficiência térmica global (%) em função da temperatura de saída de ar úmido empregado (°C)

Figura 32 – Eficiência térmica global do spray dryer (%) em função da taxa de consumo de GLP (em kg/h)

Através destes gráficos (Figuras 31 e 32), observa-se que existe um valor máximo para a eficiência térmica global, correspondente a 69%, para uma temperatura de entrada de ar de 238°C, temperatura de saída de ar de 91°C e taxa de consumo de GLP de 33 kg/h, conforme dados coletados na planta.

Portanto, para se obter um melhor aproveitamento de energia na planta, deve-se operá-la controlando as temperaturas de entrada e saída de ar nesses valores indicados.

As taxas de consumo de GLP (kg/h) e de produção de pó de NH₄F / NH₄HF₂ (kg/h) em função da temperatura de saída de ar úmido empregado (°C) são mostradas nas Figuras 33 e 34, respectivamente.

Figura 33 – Taxa de consumo de GLP (kg/h) em função da temperatura de saída de ar úmido empregado (°C)

Figura 34 – Taxa de produção de pó de $\rm NH_4F$ / $\rm NH_4HF_2$ (kg/h) em função da temperatura de saída de ar úmido empregado (°C)

Para termos uma melhor inferência na análise das taxas de consumo de GLP e de produção do pó, foi determinada a relação custo de GLP por quilograma de pó produzido, a partir dos dados apresentados na Tabela 28. Os valores obtidos para a referida relação estão mostrados na Tabela 29.

Temperatura de saída de ar Custo do GLP (R\$) / kg de pó úmido (°C) produzido 87 1.60 1,58 88 89 1,58 90 1,56 91 1,55 92 1,58 93 1,57 94 1.59 95 1,57 96 1,58 97 1,62 98 1,57 99 1,60 100 1,59

Tabela 29 – Razão entre o custo de GLP e a massa de pó produzido para cada valor de temperatura de saída de ar úmido empregado nas simulações

Obteve-se ainda o gráfico que relaciona a razão custo / produção em cada simulação, fazendo a temperatura de saída de ar úmido como a variável de referência. Este gráfico é mostrado na Figura 35.

Figura 35 – Razão entre o custo de GLP e a massa de pó produzido (R/kg) em função da temperatura de saída de ar úmido empregado ($^{\circ}$ C)

Observa-se neste gráfico, que dentro da faixa de operação da planta, há pontos de mínimo para a relação custo de GLP/massa de pó produzido, sendo que o menor valor deles, corresponde a R\$1,55/kg. Para se obter esta relação de custo de GLP por massa de pó produzido, a planta deverá ser operada, controlando a temperatura de ar de entrada entre 235 a 238°C e a temperatura de ar de saída entre 90 a 91°C, o que também coincide com os parâmetros de operação para a obtenção da melhor eficiência térmica global.

6 CONCLUSÕES

Os dados fornecidos pelo fabricante do equipamento e os respectivos modelos matemáticos obtidos são razoavelmente verificados, porém não muito precisos para o estudo de um equipamento específico, justamente por abrangerem secadores com diferentes dimensões e para diversos tipos de aplicações.

As equações determinadas para a elaboração dos simuladores, a partir de dados reais coletados durante a operação da planta de secagem, atendem satisfatoriamente ao processo, mas suas aplicações são limitadas aos parâmetros iniciais de entrada considerados, mostrados na Seção 4.

A partir da análise das simulações realizadas, foi verificado que, para as seguintes variáveis de controle: temperatura de entrada de ar quente na câmara de secagem igual a 253°C e temperatura de saída de ar úmido igual a 98°C, obtém-se a maior vazão mássica de pó produzido (61,2 kg/h). Porém, obtém-se também um consumo de GLP relativamente alto (35,3 kg/h).

Ao analisarmos em conjunto o custo de GLP com a produção de pó, fazendo a relação custo/produtividade, verificou-se claramente que para a temperatura de entrada de ar quente na câmara de secagem igual a 238°C e temperatura de saída de ar úmido igual a 91°C, obtém-se a menor razão (R\$ 1,55 de GLP / kg de pó produzido).

O conjunto de valores de 238°C para a temperatura de entrada de ar quente na câmara de secagem e 91°C para a temperatura de saída de ar úmido, também resulta em uma maior eficiência térmica global para o *spray dryer* (69,0%), confirmando seu melhor desempenho, na operação do equipamento.

7 SUGESTÕES PARA TRABALHOS FUTUROS

No processo de secagem da solução aquosa de fluoreto de amônio por *spray dryer*, pode ocorrer a degradação do fluoreto de amônio em amônia e bifluoreto de amônio, de acordo com a temperatura de trabalho. Portanto, pode ser futuramente desenvolvido um estudo sobre a influência da temperatura na produção de bifluoreto de amônio cristalizado por *spray dryer*, a partir de uma solução de fluoreto de amônio.

Sugere-se construir simuladores mais sofisticados para o processo de secagem por *spray dryer* da solução de fluoreto de amônio, onde se possa por exemplo, variar as condições iniciais de temperatura e umidade relativa do ar ambiente, a concentração de alimentação do material a ser secado e/ou a velocidade de rotação do disco centrífugo do atomizador.

Sugere-se, também, o desenvolvimento de estudos para o processo de secagem por *spray dryer* da solução de fluoreto de amônio, utilizando atomizadores de bicos de pressão. Pode ser feita ainda, uma comparação entre os resultados obtidos pelo atomizador de disco centrífugo e o atomizador de bico de pressão.

Pode ser explorado, também, a determinação de parâmetros de operação, a partir de modelos matemáticos para o processo de secagem de fluoreto de amônio por *spray dryer*, porém, visando a obtenção de diferentes tamanhos de partículas para o pó produzido.

REFERÊNCIAS

BELTRÁN, L. et al. Description of morphological changes of particles along spray drying. **Journal of Food Engineering**, v. 67, p.179-184, 2004.

BENNETT, C. O.; MYERS, J. E. Fenômenos de transporte. São Paulo: Mc Graw-Hill, 1978. 821 p.

BLACKADDER, D. A.; NEDDERMAN, R. M. Manual de operações unitárias. Hemus, 2004. 276 p.

CASSINI, A. S. **Análise das características de secagem da proteína texturizada de soja.** 2004. Dissertação (Mestrado em Engenharia Química) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2004.

CHARLESWORTH, D. H.; MARSHALL, W. R. AIChe J., v.6, p. 9, 1960.

CORREA, J. R. P.; FARIAS, F. Modelling and control of a spray dryer: a simulation study. **Food Control**, v. 6, n. 4, p. 219-227, 1995.

COULSON, J. M.; RICHARDSON, J. F. **Ingenieria química - operaciones básicas.** 3. ed. Oxford: Pergamon, 1981.

DICKINSON, D. R.; MARSHALL, W. R. The rates of evaporation of sprays. **AIChe J.**, v. 14, p. 541, 1968.

DLOUHY, J.; GAUVIN, W. H. Heat and mass transfer in spray drying. **AIChe J.**, v. 6, n. 1, p. 29-34, 1960.

DUCEPT, F.; SIONNEAU, M.; VASSEUR, J. Superheated steam dryer: simulations and experiments on product drying. **Chemical Engineering Journal**, v. 86, p. 75-83, 2002.

DUFFIE, J. A.; MARSHALL Jr., W. R. Factors influencing the properties of spray dried Materials. **Chemical Engineering Progress**, v. 49, n. 8, p. 417-423, 1953.

FEDER, A. Charts provide quick way to radiant heat transfer. **Chem. Eng.**, v. 66, n.19, p. 159, 1959.

FLETCHER, D. F. et al. What is important in the simulation of spray dryer performance and how do current CFD models perform? **Applied Mathematical Modeling**, v. 30, p. 1281-1292, 2006.

FOUST A. S. et al. **Princípio das operações unitárias.** 2. ed. Rio de Janeiro: LTC, 1982. 670 p.

FURUTA, T.; HAYASHI, H.; OHASHI, T. Some criteria of spray dryer design for food liquid. **Drying technology**, v. 12, n. 1-2, p. 151-177, 1994.

GALAXIE. **Manual de uso e mantenimiento – planta secado spray:** Galaxie Mod. 3530. Buenos Aires: Galaxie, 2000. 22 p.

GAUVIN, W. H.; BALTAS, L. Performance predictions for a cocuvent spray dryer. **AIChe J.**, v. 15, p.764, 1969.

GAUVIN, W. H.; KATTA, S. Vaporizing droplet in a spray dryer. **AIChe J.**, v. 21, p.143, 1975.

_____. Vaporizing droplet performance. AIChe J., v. 22, p. 713, 1976.

GLUCKERT, F. A. Theoretical correlation of spray-dryer performance. **AIChe J.**, v. 8, p. 460, 1962.

GOULA, A. M.; ADAMOPOULOS, K. G. Spray drying of tomato pulp in dehumidified air: I. The effect on product recovery. **Journal of Food Engineering**, v. 66, p. 25-34, 2005.

_____. Spray drying of tomato pulp in dehumidified air: II. The efect on powder properties. **Journal of Food Engineering**, v. 66, p. 35-42, 2005.

GUERRA, R. B.; NEVES, E. C. A.; PENA R. S. Caracterização e processamento de leite bubalino em pó em secador por nebulização. **Tecnol. Aliment. Ciênc.**, v. 25, n. 3, p. 443-447, 2005.

HIMMELBLAU, D. M. **Engenharia química - princípios e cálculos.** 4. ed. Rio de Janeiro: Prentice-Hall, 1984. 506 p.

HUANG, L. X.; KUMAR, K.; MUJUMDAR, A. S. A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations. **Chemical Engineering and Processing**, v. 45, p. 461-470, 2006.

INDÚSTRIAS NUCLEARES DO BRASIL. **Manual de tratamento de efluentes líquidos.** Resende: INB, 1998. 90 p.

<u>445 p.</u>. **Relatório final de análise de segurança**: FCN-II – INB rev. 3. Resende: INB, 2005.

JANDA, F. Calculation of the height of a drying tower with a spraying jet for a single compound. **Int. Chem. Eng.**, v. 13, p. 649, 1977.

KEEY, R. B.; PHAM, Q. T. Residence-time distribution of air in a tall-form spray chamber. **Trans. Int. Chem. Eng.**, v. 55, p. 114, 1977.

LANGRISH, T. A. G.; FLETCHER, D. F. Spray drying of food ingredients and applications of CFD in spray drying. **Chemical Engineering and Processing**, v. 40, p. 345-354, 2001.

LANGRISH, T. A. G.; KOCKEL, T. K. The assessment of a characteristic drying curve for milk powder for use in computational fluid dynamics modeling. **Chemical Engineering Journal**, v. 84, p. 69-74, 2001.

LEITE, J. T. C. **Obtenção de extrato de inulina de chicória (Cichorium intybus) por abaixamento de temperatura e secagem por spray dryer.** 2001. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Estadual de Campinas, Campinas, 2001.

LEONCHIK, B. L. Proceedings of the 2nd Soviet Union - Conference on Heat and Mass Transfer. **Rand Report** R 451, 1964.

MARONE, I. Y. A. Design of spray dryers. Rússia: Found. Chem. Eng., 1971. 546 p.

MARSHALL, W. R. **Heat and mass transfer in spray drying.** New York: Trans. ASME, 1955. 1377 p.

MASTERS, K. Spray drying. 3. ed. New York: John Wiley & Sons Inc., 1979. 687 p.

MAURY, M. et al. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. **European Journal of Pharmaceutics and Biopharmaceutics**, v. 59, p. 565-573, 2005.

MAZZA, M. G. G. **Secagem de óxidos de terras raras em** *spray dryer*. 2002. Tese (Doutorado) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2002.

McCABE, W. L.; SMITH, J. C. Unit operations of chemical engineering. Tokio: Mc Graw-Hill, 1956. 1028 p.

MCILVRIED, H.G.; MASSOTH, F. E. Ind. Eng. Chem. Fundam., v. 12, p. 225, 1973.

MIESSE, C. C. Ballistic of on evaporating droplet. Jet Propul., v. 24, p. 237, 1954.

NAVA, J. et al. Robustness of a proportional-integral with feedforward action control in a plant pilot spray dryer. **Chemical Engineering Journal**, v. 86, p. 47-51, 2002.

NETO, B. B. et al. Como fazer experimentos. 2. ed. Campinas: Unicamp, 2003. 401 p.

NOGUEIRA, R. I. **Processo de obtenção de insulina de chicória** (*Cichorium intybus*) **em pó.** 2002. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual de Campinas, Campinas, 2002.

NONHEBEL, G.; MOSS, A. A. H. **Drying solids in the chemical industry.** London: Butterworths, 1971. 301 p.

PEREIRA, A. **Avaliação microestrutural de pós de suco de maracujá obtidos por** *spray drying* **mediante a ação química.** 2000. Dissertação (Mestrado) - Universidade Federal de Lavras, Lavras, 2000.

PERLINGEIRO, C. A. G. Engenharia de processos. São Paulo: Edgar Blücher, 2005. 198 p.

PERRY, R. H.; GREEN, D. W. **Perry's chemical engineering handbook.** 7. ed. New York: Mc Graw-Hill, 1997. 660 p.

PROBERT, R. P. The influence of spray particle size and distribution in the combustion of oil droplet. **Philos. Mag.**, v. 37, p. 94, 1946.

REINHOLD, M. et al. Experimental and theoretical investigations of a spray dryer with simultaneous chemical reaction. **Chemical Engineering Science**, v. 56, p. 1657-1665, 2001.

SATTLER, K.; FEINDT, H. J. **Thermal separation processes, principles and design.** 1. ed. Weinhein: VCH, 1995. 536 p.

SCHLUNDER, E. H. Technische hochschule. 1962. PhD Thesis - Darmstadt, Germany, 1962.

SCHWEITZER, P. A. Handbook of separations techniques for chemical engineering. 2. ed. Mc Graw-Hill, 1988.

SHAPIRO, A.H.; ERICKSON, A. T. Chaging size spectrum of particles clouds undergoing evaporation, combustion, or acceleration. **Trans. ASME**, v. 79, p. 775, 1957.

SJENITZER, F. Spray drying. Chem. Eng. Sci., v. 1, p. 101, 1952.

Evaporation of a liquid spray injected in to a stream of gas. **Chem. Eng. Sc.**, v. 17, p. 309, 1962.

STAFFORD, R. A. et al. Flowrate quantification of the pumped-air stream from a 63 mm diameter centrifugal wheel atomizer. **Chemical Engineering Journal**, v. 72, p. 139-151, 1999.

STRAATSMA, J. et al. Spray drying of food products: 1. Simulation model. Journal of Food Engineering NIZO Food Research, v. 42, p. 67-72, 1999.

_____. Spray drying of food products: 2. Prediction of insolubility index. Journal of Food Engineering NIZO Food Research, v. 42, p. 73-77, 1999.

TURBA, J.; NEMETH, J. Spray dryer. Br. Chem. Eng., v. 9, p. 157, 1964.

VIEHWEG, H.; BIESS, G.; WEBER, B. Chem. Technol., v. 20, p. 355, 1974.

VIEIRA, M. L. H. **Modelagem de um sistema de controle por lógica difusa empregado na secagem por atomização de produtos cerâmicos.** 1999. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Santa Catarina, Florianópolis, 1999.

WENDEL, S.; ÇELIK, M. An overview of Spray Drying technology. **Pharmaceutical Technology**, v. 2, p. 31-45, 1998.

WILDHAGEN, G. R. S. **Estudo da decomposição térmica do nitrato de uranila e hidróxido de Cério em secador spray.** 1993. Tese (Doutorado) - Universidade Federal do Rio de janeiro, Rio de janeiro,1993.

YARON, I.; GAL-OR, B. Convective mass or heat transfer from size-distributed drops, bulbes, or solid particles. **Int. J. Heat Mass Transfer**, v. 14, p. 727, 1971.

Dia	Horário	Temperatura Ambiente (°C)	X_o^R	Mês
18-qui	0:00	24,0	77,5	
	2:00	24,0	77,5	
	4:00	24,0	77,5	
	6:00	24,0	77,5	
	8:00	24,0	77,5	
	10:00	24,0	77,5	
	12:00	24,0	75,0	
	14:00	24,0	75,0	
	16:00	24,0	75,0	
	18:00	24,0	75,0	
	20:00	24,0	75,0	
	22:00	24,0	75,0	
19-sex	0:00	24,0	75,0	
	2:00	24,0	75,0	
	4:00	24,0	75,0	
	6:00	24,0	75,0	
	8:00	25,0	75,0	
	10:00	25,0	75,0	\circ
	12:00	25,0	75,0	Ç
	14:00	25,0	77,5	IAF
	16:00	25,0	80,0	\geq
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	75,0	
20-sáb	0:00	25,0	70,0	
	2:00	25,0	70,0	
	4:00	24,0	70,0	
	6:00	24,0	70,0	
	8:00	24,0	72,5	
	10:00	24,0	72,5	
	12:00	24,0	72,5	
	14:00	25,0	77,5	
	16:00	25,0	77,5	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
21-dom	0:00	25,0	77,5	
	2:00	25,0	75,0	
	4:00	24.0	75.0	

APÊNDICE P - Temperatura e umidade relativa do ar medidas no período de 18/03/2004 a 10/05/2004

Continuação do APÊNDICE P

	6:00	24,0	75,0	
	8:00	24,0	72,5	
	10:00	24,0	67,5	
	12:00	24,0	70,0	
	14:00	24,0	72,5	
	16:00	24,0	72,5	
	18:00	24,0	67,5	
	20:00	24,0	67,5	
	22:00	24,0	70,0	
22-seg	0:00	24,0	72,5	
C	2:00	24,0	67,5	
	4:00	24,0	70,0	
	6:00	24,0	72,5	
	8:00	24,0	67,5	
	10:00	24,0	65,0	
	12:00	24,0	65,0	
	14:00	24,0	65,0	
	16:00	24,0	65,0	
	18:00	24,0	65,0	
	20:00	24,0	65,0	
	22:00	24,0	65,0	
23-ter	0:00	24,0	65,0	
	2:00	24,0	65,0	
	4:00	24,0	65,0	
	6:00	24,0	65,0	
	8:00	24,0	65,0	
	10:00	24,0	65,0	
	12:00	24,0	65,0	
	14:00	24,0	65,0	
	16:00	24,0	65,0	
	18:00	24,0	67,5	
	20:00	24,0	67,5	
	22:00	24,0	67,5	
24-qua	0:00	24,0	70,0	
	2:00	24,0	70,0	
	4:00	25,0	67,5	
	6:00	25,0	67,5	
	8:00	25,0	67,5	
	10:00	25,0	67,5	
	12:00	25,0	67,5	
	14:00	25,0	65,0	
	16:00	25,0	65,0	
	18:00	25,0	67,5	

)		
	67,5	
	67,5	
	67,5	
	67,5	
	67,5	
	67,5	
	67.5	

Continuação do APÊNDICE P

	20:00	25,0	67,5	
	22:00	25,0	67,5	
25-qui	0:00	25,0	67,5	
	2:00	25,0	67,5	
	4:00	25,0	67,5	
	6:00	25,0	67,5	
	8:00	25,0	67,5	
	10:00	25,0	67,5	
	12:00	25,0	67,5	
	14:00	25,0	67,5	
	16:00	25,0	67,5	
	18:00	25,0	67,5	
	20:00	25,0	72,5	
	22:00	25,0	75,0	
26-sex	0:00	25,0	72,5	
	2:00	25,0	72,5	
	4:00	25,0	72,5	
	6:00	25,0	72,5	
	8:00	25,0	70,0	
	10:00	25,0	70,0	
	12:00	25,0	70,0	
	14:00	25,0	70,0	
	16:00	25,0	70,0	
	18:00	25,0	70,0	
	20:00	25,0	75,0	
	22:00	25,0	70,0	
27-sáb	0:00	25,0	72,5	
	2:00	25,0	75,0	
	4:00	25,0	72,5	
	6:00	25,0	72,5	
	8:00	25,0	72,5	
	10:00	25,0	72,5	
	12:00	25,0	72,5	
	14:00	25,0	72,5	
	16:00	25,0	72,5	
	18:00	25,0	75,0	
	20:00	25,0	75,0	
	22:00	25,0	75,0	
28-dom	0:00	25,0	75,0	
	2:00	25,0	75,0	
	4:00	25,0	75,0	
	6:00	25,0	72,5	
	8:00	25,0	72,5	

	10:00	25,0	67,5	
	12:00	25,0	72,5	
	14:00	25,0	72,5	
	16:00	25,0	72,5	
	18:00	25,0	70,0	
	20:00	25,0	72,5	
	22:00	25,0	72,5	
29-seg	0:00	25,0	72,5	
	2:00	25,0	72,5	
	4:00	25,0	75,0	
	6:00	25,0	70,0	
	8:00	25,0	70,0	
	10:00	25,0	80,0	
	12:00	25,0	75,0	
	14:00	25,0	75,0	
	16:00	25,0	75,0	
	18:00	25,0	72,5	
	20:00	25,0	75,0	
	22:00	25,0	75,0	
30-ter	0:00	25,0	72,5	
	2:00	25,0	70,0	
	4:00	25,0	70,0	
	6:00	25,0	70,0	
	8:00	25,0	70,0	
	10:00	25,0	70,0	
	12:00	24,0	72,5	
	14:00	24,0	70,0	
	16:00	24,0	70,0	
	18:00	24,0	70,0	
	20:00	24,0	70,0	
	22:00	24,0	70,0	
31-qua	0:00	25,0	67,5	
	2:00	25,0	67,5	
	4:00	25,0	67,5	
	6:00	25,0	67,5	
	8:00	25,0	67,5	
	10:00	25,0	67,5	
	12:00	25,0	70,0	
	14:00	25,0	70,0	
	16:00	25,0	67,5	
	18:00	25,0	70,0	
	20:00	25,0	75,0	
	22:00	25,0	75,0	

01-qui	0:00	25,0	75,0	
	2:00	25,0	77,5	
	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	77,5	
	10:00	25,0	75,0	
	12:00	25,0	77,5	
	14:00	25,0	75,0	
	16:00	25,0	75,0	
	18:00	25,0	75,0	
	20:00	25,0	72,5	
	22:00	25,0	75,0	
02-sex	0:00	25,0	77,5	
	2:00	25,0	77,5	
	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	77,5	
	10:00	25,0	72,5	
	12:00	25,0	75,0	
	14:00	25,0	77,5	
	16:00	25,0	75,0	
	18:00	25,0	70,0	
	20:00	25,0	70,0	
	22:00	25,0	72,5	
03-sáb	0:00	25,0	77,5	
	2:00	25,0	75,0	
	4:00	25,0	75,0	
	6:00	25,0	75,0	
	8:00	25,0	72,5	
	10:00	25,0	72,5	
	12:00	25,0	72,5	
	14:00	25,0	77,5	
	16:00	25,0	75,0	
	18:00	25,0	75,0	
	20:00	25,0	75,0	
	22:00	25,0	72,5	
04-dom	0:00	25,0	72,5	
	2:00	25,0	72,5	
	4:00	25,0	72,5	
	6:00	25,0	72,5	
	8:00	25,0	75,0	
	10:00	25,0	75,0	
	12:00	25,0	75,0	

Continuação do APÊNDICE P
	14:00	25,0	77,5	
	16:00	25,0	77,5	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
05-seg	0:00	25,0	80,0	
C	2:00	25,0	80,0	
	4:00	25,0	80,0	
	6:00	25,0	80,0	
	8:00	25,0	77,5	
	10:00	25.0	80.0	
	12:00	25.0	80.0	
	14:00	25.0	75.0	
	16:00	25.0	77.5	
	18:00	25.0	77.5	
	20:00	25.0	80.0	
	22:00	25.0	80.0	
06-ter	0.00	25.0	80,0	
	2:00	25,0 25,0	80,0	
	4.00	25,0 25,0	80,0	
	6:00	25,0 25,0	75 0	
	8:00	25,0 25,0	75,0	
	10.00	25,0 25,0	77 5	
	12:00	25,0 25,0	80.0	
	12.00 14.00	25,0 25,0	80,0	
	16:00	25,0 25,0	77 5	
	18:00	25,0 25,0	77,5	
	20:00	25,0 25,0	75.0	
	22:00	25,0 25,0	75,0	
07 - aua	0.00	25,0 25,0	75,0	
07 quu	2.00	25,0 25,0	72,5	
	2:00	25,0	72,5	
	4:00 6:00	25,0	72,5	
	8:00	25,0	72,5	
	10.00	25,0	75.0	
	12:00	25,0	73,0	
	12:00	25,0	77,5	
	14.00	25,0	75.0	
	18.00	25,0	75.0	
	20.00	25,0	20,0 20,0	
	20.00	25,0	80,0 80 0	
08 aui	22.00	25,0	80,0 80 0	
vo-qui	2.00	25,0	80.0	
	2.00	2J.U	00.0	

Continuação do APÊNDICE P

	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	77,5	
	10:00	25,0	80,0	
	12:00	25,0	80,0	
	14:00	25,0	80,0	
	16:00	25,0	77,5	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
09-sex	0:00	25,0	82,5	
	2:00	25,0	82,5	
	4:00	25,0	82,5	
	6:00	25,0	82,5	
	8:00	25,0	82,5	
	10:00	25,0	82,5	
	12:00	25,0	82,5	
	14:00	25,0	82,5	
	16:00	25,0	82,5	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
10-sáb	0:00	25,0	77,5	
	2:00	25,0	77,5	
	4:00	25,0	77,5	
	6:00	26,0	77,5	
	8:00	26,0	77,5	
	10:00	26,0	77,5	
	12:00	26,0	77,5	
	14:00	26,0	77,5	
	16:00	26,0	77,5	
	18:00	26,0	80,0	
	20:00	26,0	80,0	
	22:00	26,0	80,0	
11-dom	0:00	26,0	80,0	
	2:00	26,0	80,0	
	4:00	26,0	77,5	
	6:00	26,0	77,5	
	8:00	26,0	77,5	
	10:00	25,0	75,0	
	12:00	25,0	75,0	
	14:00	25,0	75,0	
	16:00	25,0	75,0	

Continuação do APÊNDICE P

	18:00	25,0	72,5	
	20:00	25,0	72,5	
	22:00	25,0	75,0	
12-seg	0:00	25,0	77,5	
-	2:00	25,0	77,5	
	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	72,5	
	10:00	25,0	77,5	
	12:00	25,0	77,5	
	14:00	25,0	77,5	
	16:00	25,0	77,5	
	18:00	25,0	77,5	
	20:00	25,0	77,5	
	22:00	25,0	77,5	
13-ter	0:00	25,0	77,5	
	2:00	25,0	77,5	
	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	80,0	
	10:00	25,0	80,0	
	12:00	25,0	80,0	
	14:00	25,0	80,0	
	16:00	25,0	80,0	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
14-qua	0:00	25,0	80,0	
	2:00	25,0	80,0	
	4:00	25,0	80,0	
	6:00	25,0	80,0	
	8:00	25,0	80,0	
	10:00	25,0	80,0	
	12:00	25,0	82,5	
	14:00	25,0	82,5	
	16:00	25,0	82,5	
	18:00	25,0	82,5	
	20:00	25,0	82,5	
	22:00	25,0	82,5	
15-qui	0:00	25,0	82,5	
	2:00	25,0	82,5	
	4:00	25,0	82,5	
	6:00	25,0	82,5	

Continuação do APÊNDICE P

Continuação do APÊNDICE P

	8:00	25,0	82,5	
	10:00	25,0	82,5	
	12:00	25,0	80,0	
	14:00	25,0	80,0	
	16:00	25,0	82,5	
	18:00	25,0	82,5	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
16-sex	0:00	25,0	80,0	
	2:00	25,0	80,0	
	4:00	25,0	77,5	
	6:00	25,0	75,0	
	8:00	25,0	72,5	
	10:00	25,0	75,0	
	12:00	25,0	77,5	
	14:00	25,0	77,5	
	16:00	25,0	80,0	
	18:00	25,0	82,5	
	20:00	25,0	82,5	
	22:00	25,0	82,5	
17-sáb	0:00	25,0	82,5	
	2:00	25,0	80,0	
	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	77,5	
	10:00	25,0	77,5	
	12:00	25,0	82,5	
	14:00	25,0	82,5	
	16:00	25,0	82,5	
	18:00	25,0	82,5	
	20:00	25,0	82,5	
	22:00	25,0	82,5	
18-dom	0:00	25,0	82,5	
	2:00	25,0	82,5	
	4:00	25,0	80,0	
	6:00	25,0	80,0	
	8:00	25,0	80,0	
	10:00	25,0	80,0	
	12:00	25,0	80,0	
	14:00	25,0	82,5	
	16:00	25,0	82,5	
	18:00	25,0	82,5	
	20:00	25,0	80,0	

	22:00	25,0	82,5	
19-seg	0:00	25,0	82,5	
	2:00	25,0	82,5	
	4:00	25,0	82,5	
	6:00	25,0	80,0	
	8:00	25,0	77,5	
	10:00	25,0	77,5	
	12:00	25,0	80,0	
	14:00	25,0	80,0	
	16:00	25,0	80,0	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
20-ter	0:00	25,0	77,5	
	2:00	25,0	77,5	
	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	77,5	
	10:00	25,0	80,0	
	12:00	25,0	80,0	
	14:00	25,0	77.5	
	16:00	25,0	80.0	
	18:00	25,0	80.0	
	20:00	25,0	80.0	
	22:00	25.0	80.0	
21-qua	0:00	25.0	80.0	
1	2:00	25.0	77.5	
	4:00	25.0	77.5	
	6:00	25.0	77.5	
	8:00	25.0	77.5	
	10:00	25.0	77.5	
	12:00	25.0	80.0	
	14:00	25.0	80,0	
	16:00	25.0	80.0	
	18:00	25,0	82.5	
	20:00	25,0	82,5	
	20:00	25,0	80.0	
26-seg	8.00	25,0	67 5	
20-302	10.00	25,0	65.0	
	10.00	25,0	675	
	12.00	25,0	67.5	
	14.00	25,0	67.5	
	10.00	25,0	70.0	
	10.00	∠J,U	/0,0	

Continuação do APÊNDICE P

	20:00	25,0	70,0	
	22:00	25,0	70,0	
27-ter	0:00	25,0	70,0	
	2:00	25,0	70,0	
	4:00	25,0	70,0	
	6:00	25,0	70,0	
	8:00	25,0	70,0	
	10:00	25,0	70,0	
	12:00	25,0	70,0	
	14:00	24,0	70,0	
	16:00	24,0	70,0	
	18:00	24,0	70,0	
	20:00	24,0	70,0	
	22:00	24,0	70,0	
28-qua	0:00	24,0	72,5	
	2:00	24,0	72,5	
	4:00	24,0	72,5	
	6:00	24,0	72,5	
	8:00	24,0	72,5	
	10:00	24,0	72,5	
	12:00	24,0	72,5	
	14:00	24,0	67,5	
	16:00	24,0	65,0	
	18:00	23,0	65,0	
	20:00	23,0	65,0	
	22:00	23,0	67,5	
29-qui	0:00	23,0	67,5	
	2:00	23,0	67,5	
	4:00	24,0	67,5	
	6:00	24,0	70,0	
	8:00	24,0	70,0	
	10:00	24,0	65,0	
	12:00	24,0	70,0	
	14:00	24,0	70,0	
	16:00	24,0	65,0	
	18:00	24,0	65,0	
	20:00	23,0	65,0	
	22:00	23,0	67,5	
30-sex	0:00	23,0	67,5	
	2:00	23,0	70,0	
	4:00	23,0	70,0	
	6:00	23,0	67,5	
	8:00	23,0	65,0	

Continuação do APÊNDICE P

	10:00	23,0	65,0
	12:00	23,0	67,5
	14:00	23,0	67,5
	16:00	23,0	65,0
	18:00	23,0	65,0
	20:00	23,0	65,0
	22:00	23,0	67,5
01-sáb	0:00	23,0	67,5
	2:00	23,0	67,5
	4:00	23,0	67,5
	6:00	23,0	65,0
	8:00	23,0	65,0
	10:00	23,0	65,0
	12:00	23,0	67,5
	14:00	23,0	70,0
	16:00	23,0	67,5
	18:00	23,0	67,5
	20:00	23,0	65,0
	22:00	23,0	70,0
02-dom	0:00	23,0	70,0
	2:00	23,0	67,5
	4:00	23,0	67,5
	6:00	23,0	65,0
	8:00	23,0	65,0
	10:00	24,0	65,0
	12:00	24,0	67,5
	14:00	24,0	70,0
	16:00	24,0	72,5
	18:00	24,0	70,0
	20:00	24,0	65,0
	22:00	24,0	70,0
03-seg	0:00	24,0	72,5
	2:00	24,0	75,0
	4:00	24,0	75,0
	6:00	24,0	72,5
	8:00	24,0	70,0
	10:00	23,0	70,0
	12:00	23,0	70,0
	14:00	23,0	72,5
	16:00	23,0	67,5
	18:00	23,0	72,5

Continuação do APÊNDICE P

75,0

77,5

24,0

24,0

20:00 22:00

04-ter	0:00	24,0	77,5	
	2:00	24,0	77,5	
	4:00	25,0	77,5	
	6:00	25,0	70,0	
	8:00	25,0	70,0	
	10:00	25,0	75,0	
	12:00	25,0	75,0	
	14:00	25,0	72,5	
	16:00	25,0	72,5	
	18:00	25,0	72,5	
	20:00	25,0	77,5	
	22:00	25,0	77,5	
05-qua	0:00	25,0	77,5	
	2:00	25,0	77,5	
	4:00	25,0	75,0	
	6:00	25,0	75,0	
	8:00	25,0	75,0	
	10:00	25,0	75,0	
	12:00	25,0	75,0	
	14:00	25,0	77,5	
	16:00	25,0	77,5	
	18:00	25,0	77,5	
	20:00	25,0	77,5	
	22:00	25,0	80,0	
06-qui	0:00	25,0	80,0	
	2:00	25,0	80,0	
	4:00	25,0	80,0	
	6:00	25,0	80,0	
	8:00	25,0	80,0	
	10:00	25,0	72,5	
	12:00	25,0	72,5	
	14:00	25,0	72,5	
	16:00	25,0	80,0	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
07-sex	0:00	25,0	80,0	
	2:00	25,0	77,5	
	4:00	25,0	77,5	
	6:00	25,0	77,5	
	8:00	25,0	77,5	
	10:00	25,0	77,5	
	12:00	25,0	80,0	

Continuação do APÊNDICE P

	14:00	25,0	80,0	
	16:00	25,0	80,0	
	18:00	25,0	80,0	
	20:00	25,0	80,0	
	22:00	25,0	80,0	
08-sáb	0:00	25,0	77,5	
	2:00	25,0	77,5	
	4:00	25,0	72,5	
	6:00	25,0	72,5	
	8:00	25,0	70,0	
	10:00	25,0	67,5	
	12:00	25,0	70,0	
	14:00	25,0	67,5	
	16:00	25,0	65,0	
	18:00	25,0	65,0	
	20:00	25,0	67,5	
	22:00	25,0	67,5	
09-dom	0:00	25,0	67,5	
	2:00	25,0	65,0	
	4:00	25,0	65,0	
	6:00	25,0	65,0	
	8:00	25,0	65,0	
	10:00	25,0	65,0	
	12:00	25,0	65,0	
	14:00	25,0	65,0	
	16:00	25,0	65,0	
	18:00	25,0	65,0	
	20:00	25,0	65,0	
	22:00	25,0	65,0	
10-seg	0:00	25,0	65,0	
_	2:00	25,0	65,0	
	4:00	25,0	65,0	
	6:00	25,0	65,0	
	8:00	25,0	65,0	
	10:00	25,0	65,0	
	12:00	25,0	65,0	
	14:00	25,0	65,0	
	16:00	25,0	65,0	
	18:00	25,0	65,0	
	20:00	25,0	65,0	
	22:00	25,0	67,5	
	Média =	25	74	
	Desvio Padrão =	1	5	

n (min ⁻¹)	n (em %)	Vazão de entrada (L/h)	Vazão mássica de sol. NH ₄ F (kg/h)*
0	0,0	0	0,0
50	2,5	50	52,5
100	5,0	100	105,0
150	7,5	150	157,5
200	10,0	190	199,5
250	12,5	240	252,0
300	15,0	280	294,0
350	17,5	330	346,5
400	20,0	380	399,0
450	22,5	420	441,0
500	25,0	460	483,0
550	27,5	510	535,5
600	30,0	550	577,5
650	32,5	600	630,0
700	35,0	640	672,0
750	37,5	690	724,5
800	40,0	730	766,5
850	42,5	780	819,0
900	45,0	840	882,0
950	47,5	880	924,0
1000	50,0	930	976,5
1050	52,5	960	1008,0
1100	55,0	1020	1071,0
1150	57,5	1070	1123,5
1200	60,0	1110	1165,5
1250	62,5	1160	1218,0
1300	65,0	1200	1260,0
1350	67,5	1240	1302,0
1400	70,0	1290	1354,5
1450	72,5	1330	1396,5
1500	75,0	1380	1449,0
1550	77,5	1430	1501,5
1600	80,0	1480	1554,0
1650	82,5	1530	1606,5
1700	85,0	1580	1659,0
1750	87,5	1630	1711,5
1800	90,0	1670	1753,5
1850	92,5	1710	1795,5
1900	95,0	1750	1837,5
1950	97,5	1800	1890,0
2000	100,0	1850	1942,5
* consid	erando a densidade re	elativa da solução de NH₄F	F = 1,05.

APÊNDICE Q – Tabela de correlação da freqüência do motor da bomba de alimentação da solução de fluoreto de amônio

Temperatur	ra do ar (°C)	ΔT do ar (°C)	% freqüência alim.
entrada	saída		
169	93	- 76	29
169	93	76	29
170	96	74	28
172	94	78	28
175	93	82	27
172	91	81	27
165	100	65	15
172	100	72	16
171	104	67	16
177	106	71	16
177	106	71	16
160	99	61	16
163	100	63	16
163	101	62	16
164	100	64	16
167	105	62	16
170	106	64	16
171	106	65	16
173	93	80	25
170	92	78	25
169	91	78	25
168	91	77	25
169	92	77	25
168	90	78	25
173	90	83	22
174	91	83	22
172	91	81	22
170	92	78	22
174	87	87	22
171	89	82	22
171	88	83	22
172	89	83	22
169	90	79	22
170	89	81	22
168	100	68	22
171	99	72	22
170	96	74	22
171	96	75	22
170	93	77	25
173	94	79	25
171	94	77	25
173	94	79	25

APÊNDICE R – Dados de freqüência (%) do motor da bomba de alimentação da solução de fluoreto de amônio e dos valores das temperaturas de entrada e saída do ar do equipamento de secagem, coletados no período de 18/03/2004 a 10/05/2004

174	93	81	23
173	94	79	23
175	93	82	24
175	94	81	24
174	94	80	25
171	96	75	23
173	97	76	23
174	98	76	23
173	96	77	24
174	97	77	24
170	94	76	22
173	96	77	24
171	95	76	23
167	86	81	22
169	87	82	22
171	88	83	22
169	86	83	22
170	87	83	22
172	89	83	22
172	88	84	22
176	90	86	22
174	88	86	22
177	91	86	22
171	88	83	22
175	89	86	22
177	92	85	23
170	90	80	22
175	91	84	22
174	91	83	22
166	95	71	22
172	96	76	19
174	98	76	20
178	105	73	20
170	92	78	20
169	91	78	20
171	92	79	20
169	93	76	20
171	96	75	20
173	95	78	20
172	91	81	20
175	95	80	20
171	95	76	20
170	94	76	20
170	100	70	22
175	96	79	22
173	90	83	22
171	95	76	22

Continuação do APÊNDICE R

_	169	100	69	22
	170	90	80	20
	165	120	45	20
	166	125	41	20
	180	119	61	20
	183	102	81	20
	166	118	48	10
	166	119	47	10
	175	94	81	26
	177	94	83	26
	178	93	85	28
	178	93	85	28
	180	94	86	28
	180	93	87	28
	180	94	86	26
	178	94	84	26
	180	94	86	27
	179	100	79	28
	181	93	88	28
	183	94	89	27
	184	95	89	27
	167	90	77	27
	180	95	85	24
	175	93	82	24
	170	93	77	24
	180	108	72	16
	180	118	62	15
	170	103	67	18
	170	98	72	23
	169	96	73	26
	172	94	78	26
	173	96	77	26
	174	94	80	29
	178	94	84	29
	173	94	79	29
	177	95	82	29
	176	95	81	29
	175	94	81	29
	175	94	81	29
	174	96	78	29
	175	97	78	29
	170	98	72	29
	175	91	84	29
	173	90	83	26
	180	93	87	26
	176	93	83	26
	180	96	84	29

Continuação do APÊNDICE R

178	95	83	29
178	97	81	29
179	97	82	29
172	92	80	29
166	96	70	29
171	98	73	29
172	94	78	29
172	94	78	29
176	93	83	29
173	93	80	28
170	94	76	29
173	92	81	28
180	97	83	28
180	99	81	28
179	93	86	28
179	93	86	28
179	93	86	28
171	92	79	28
173	91	82	26
173	92	81	26
176	89	87	26
178	93	85	22
175	93	82	22
177	94	83	22
174	90	84	22
171	98	73	22
169	99	70	22
168	100	68	22
170	100	70	22
171	95	76	28
168	92	76	27
169	92	77	25
170	93	77	25
160	108	52	13
159	105	54	15
160	105	55	18
161	105	56	19
165	98	67	23
164	97	67	24
164	99	65	24
165	97	68	24
165	100	65	24
164	97	67	25
160	96	64	24
160	97	63	25
161	98	63	25
162	98	64	25

Continuação do APÊNDICE R

161	98	63	25
174	102	72	25
175	100	75	25
162	102	60	28
160	99	61	28
164	100	64	28
163	99	64	28
164	100	64	28
162	100	62	28
160	98	62	28
160	104	56	28
164	101	63	28
161	98	63	28
160	96	64	28
160	94	66	28
160	95	65	28
165	96	69	28
164	96	68	28
160	92	68	26
160	95	65	24
164	96	68	28
172	91	81	28
173	93	80	28
173	96	77	28
180	97	83	28
161	97	64	28
160	97	63	28
161	97	64	28
162	99	63	28
163	97	66	28
164	96	68	28
165	99	66	28
165	100	65	28
166	101	65	27
167	98	69	27
161	99	62	28
160	99	61	28
165	100	65	28
169	90	79	28
160	95	65	28
165	96	69	28
174	93	81	28
166	95	71	26
170	94	76	28
166	97	69	26
163	98	65	27
163	98	65	28

Continuação do APÊNDICE R

167	100	67	28
168	100	68	28
170	103	67	28
170	94	76	28
165	94	71	28
171	99	72	28
172	99	73	28
159	94	65	28
162	89	73	28
163	90	73	28
161	90	71	28
160	93	67	23
158	106	52	25
160	103	52	25
159	101	58	20
158	101	50	20
172	08	74	20
172	96	74 70	20
165	98	67	20
16/	97	67	28
10 4 166	97	71	28
164	93	67	28
10 4 166	97	60	20
100	97	09	20
107	94	15 72	28
169	95	75	20
100	94	74	20
103	90	09	20
1/4	100	74	20
175	100	15	20
170	99	/ / 01	28
1/5	94	81	28
100	95	75	28
102	92	70	28
158	90	68 70	28
159	89	70	28
162	91	/1	28
164	93	/1	28
165	95	/0	28
170	96	/4	28
1/2	92	80	27
165	92	13	28
168	91	//	28
1/1	98	13	28
167	95	72	26
168	95	73	24
174	102	72	24
178	98	80	26

Continuação do APÊNDICE R

184	98	86	26
174	95	79	25
170	94	76	26
173	90	83	26
167	100	67	26
172	98	74	28
170	98	72	26
169	98	71	28
162	99	63	20
158	96	62	25
159	95	64	28
166	100	66	28
162	92	70	28
159	90	69	28
163	93	70	28
170	98	72	18
165	100	65	20
172	99	73	24
173	100	73	24
168	98	70	24
172	100	72	25
169	100	69	24
167	98	69	24
169	98	71	24
166	97	69	24
165	95	70	24
169	99	70	24
168	97	71	24
172	105	67	24
173	101	72	24
172	99	73	25
170	98	72	25
173	99	74	25
173	100	73	25
174	94	80	25
170	97	73	25
169	96	73	25
172	96	76	25
167	94	73	25
158	95	63	25
157	97	60	25
164	100	64	25
163	98	65	25
164	97	67	25
160	95	65	25
164	100	64	18
166	96	70	25

Continuação do APÊNDICE R

164	94	70	25
162	88	74	25
165	92	73	25
168	95	73	25
160	99	61	25
166	95	71	25
164	99	65	25
162	100	62	25
163	96	67	25
164	95	69	25
160	100	60	25
161	98	63	25
163	97	66	25
165	98	67	26
168	95	73	24
168	97	71	24
168	94	74	28
166	90	76	28
166	100	66	28
170	117	53	13
163	130	33	13
162	106	56	20
160	106	54	20
160	110	50	20
159	110	49	20
170	112	58	18
158	111	47	20
158	109	49	20
160	106	54	20
159	104	55	20
161	105	56	20
159	106	53	20
165	97	68	26
163	99	64	28
166	98	68	28
164	98	66	28
165	92	73	27
164	90	74	26
167	97	70	26
168	97	71	26
166	101	65	24
168	101	67	26
167	97	70	28
165	93	72	28
166	100	66	28
165	92	73	28
165	94	71	28

Continuação do APÊNDICE R

169	91	78	28
170	100	70	20
175	98	77	25
167	99	68	25
160	96	64	27
160	87	73	25
163	93	70	25
164	94	70	25
164	97	67	25
165	97	68	25
167	101	66	23
164	96	68	25
165	98	67	25
166	99	67	25
181	101	80	25
179	98	81	25
178	100	78	25
178	96	82	25
171	97	74	25
172	97	75	25
178	100	78	25
167	93	74	25
165	99	66	25
163	90	73	25
161	92	69	25
160	90	70	25
160	92	68	25
170	95	75	25
173	97	76	25
168	94	74	25
162	96	66	25
158	92	66	25
164	95	69	25
166	96	70	25
170	100	70	25
165	101	64	25
172	100	72	25
170	102	68	25
170	100	70	25
174	102	72	25
172	101	71	25
169	100	69	25
174	100	74	25
160	97	63	27
163	95	68	28
164	97	67	27
167	98	69	27
• • / /	~ \ ·		<u> </u>

Continuação do APÊNDICE R

166	95	71	27
165	99	66	27
168	99	69	27
162	95	67	25
158	96	62	25
170	98	72	25
171	97	74	25
165	103	62	25
161	98	63	25
161	100	61	25
165	101	64	25
168	102	66	25
167	98	69	25
157	92	65	23
161	95	66	25
166	95	71	25
152	92	60	25
163	96	67	25
156	90	66	25
156	89	67	25
160	91	69	25
166	97	69	25
164	08	66	25
10 4 163	98	64	25
165	99	04 67	25
160	98	63	25
100	97	63	25
130	90	02	25
1/2	93	19	23
108	92	70 79	24
172	94	/8 77	25
1/1	94	77	25
169	95	74 72	25
168	95	13	26
165	98	6/	26
166	99	6/	28
165	100	65	28
164	99	65	28
164	95	69	27
169	95	74	26
164	93	71	25
170	96	74	25
159	94	65	25
163	95	68	24
165	94	71	24
167	95	72	24
165	94	71	24
163	94	69	25

Continuação do APÊNDICE R

167	95	72	25
168	95	73	25
164	91	73	25
166	94	72	25
168	94	74	27
170	94	76	26
172	100	72	27
160	90	70	27
161	90	71	25
169	92	77	25
167	92	75	25
163	94	69	25
165	96	69	25
168	93	75	25
164	94	70	25
166	96	70	25
167	93	74	25
176	95	81	25
175	96	79	25
166	92	74	25
168	93	75	24
170	94	76	24
172	95	77	24
171	93	78	25
170	94	76	25
170	94	76	24
171	94	77	24
170	94	76	24
171	93	78	24
172	94	78	24
172	97	75	26
171	94	77	26
176	99	77	25
173	97	76	24
178	99	79	23
175	94	81	25
173	94	79	25
174	95	79	25
172	94	78	25
168	92	76	24
175	97	78	25
167	93	74	24
169	92	77	24
165	90	75	23
167	92	75	23
168	95	73	25
167	93	74	25

Continuação do APÊNDICE R

167	100	67	25
169	99	70	26
171	98	73	24
169	95	74	25
171	95	76	24
170	95	75	24
168	94	74	24
168	93	75	25
171	93	78	24
170	94	76	24
172	96	76	24
172	97	75	26
167	94	73	26
165	94	73 71	26
100	98	73	26
169	94	75 75	20
107	07	75 77	20
173	96	77	20
175	90	77	20
170	97	73	20
170	90 07	72	20
109	97	12	20
170	93	01 90	20
172	92	80	25
168	91	//	24
174	93	81	24
172	95	11	26
174	94	80	25
171	92	79	25
175	90	85	25
172	92	80	25
175	90	85	25
176	94	82	25
164	93	71	25
164	97	67	25
165	96	69	25
169	98	71	25
167	96	71	25
169	97	72	25
168	97	71	25
168	103	65	25
166	97	69	25
164	94	70	25
165	92	73	25
169	97	72	25
168	96	72	25
166	96	70	25
167	97	70	25

Continuação do APÊNDICE R

166	98	68	25
175	98	77	25
165	95	70	25
167	91	76	25
173	97	76	25
160	95	65	25
161	91	70	25
163	92	71	25
165	93	72	25
167	94	73	25
170	96	74	25
171	96	75	25
172	102	70	25
169	98	71	25
171	95	76	28
170	94	76	28
170	93	77	25
169	92	77	25
171	93	78	25
170	95	75	25
168	94	74	25
170	95	75	25
166	90	76	23
170	91	79	23
171	91	80	23
163	94	69	28
167	95	72	28
171	100	71	28
168	92	76	24
172	92	80	24
170	96	74	25
172	93	79	23
171	94	77	22
167	90	77	22
172	97	75	23
173	93	80	18
172	94	78	18
173	95	78	18
172	91	81	18
165	90	75	20
165	93	72	20
169	90	79	18
170	95	75	15
170	93	77	16
170	90	80	15
169	92	77	15
174	92	82	13

Continuação do APÊNDICE R

Continuação do APÊNDICE R

171	93	78	13
170	91	79	13

ANEXO A – Carta psicrométrica – propriedades de mistura de ar e vapor de água entre 32ºF e 600ºF, fonte: NETO (2003).

ANEXO B – Curva característica da bomba de alimentação da solução aquosa de fluoreto de amônio, fonte: Galaxie (2000)

ANEXO C – Tabela de distribuição de Student

	Área de probabilidade									
ν	0,4	0,25	0,1	0,05	0,025	0,01	0,005	0,0025	0,001	0,0005
1	0,325	1,000	3,078	6,314	12,706	31,821	63,657	127,32	318,31	636,62
2	0,289	0,816	1,886	2,920	4,303	6,965	9,925	14,089	22,326	31,598
3	0,277	0,765	1,638	2,353	3,182	4,541	5,841	7,453	10,213	12,924
4	0,271	0,741	1,533	2,132	2,776	3,747	4,604	5,598	7,173	8,610
5	0,267	0,727	1,476	2,015	2,571	3,365	4,032	4,773	5,893	6,869
6	0,265	0,718	1,440	1,943	2,447	3,143	3,707	4,317	5,208	5,959
7	0,263	0,711	1,415	1,895	2,365	2,998	3,449	4,029	4,785	5,408
8	0,262	0,706	1,397	1,860	2,306	2,896	3,355	3,833	4,501	5,041
9	0,261	0,703	1,383	1,833	2,262	2,821	3,250	3,690	4,297	4,781
10	0,260	0,700	1,372	1,812	2,228	2,764	3,169	3,581	4,144	4,587
11	0,260	0,697	1,363	1,796	2,201	2,718	3,106	3,497	4,025	4,437
12	0,259	0,695	1,356	1,782	2,179	2,681	3,055	3,428	3, 9 30	4,318
13	0,259	0,694	1,350	1,771	2,160	2,650	3,012	3,372	3,852	4,221
14	0,258	0,692	1,345	1,761	2,145	2,624	2,977	3,326	3,787	4,140
15	0,258	0,691	1,341	1,753	2,131	2,602	2,947	3,286	3,733	4,073
16	0,258	0,690	1,337	1,746	2,120	2,583	2,921	3,252	3,686	4,015
17	0,257	0,689	1,333	1,740	2,110	2,567	2,898	3,222	3,646	3,965
18	0,257	0,688	1,330	1,734	2,101	2,552	2,878	3,197	3,610	3,922
19	0,257	0,688	1,328	1,729	2,093	2,539	2,861	3,174	3,579	3,883
20	0,257	0,687	1,325	1,725	2,086	2, 528	2,845	3,153	3,552	3,850
21	0,257	0,686	1,323	1,721	2,080	2,518	2,831	3,135	3,527	3,819
22	0,256	0,686	1,321	1,717	2,074	2,508	2,819	3,119	3,505	3,792
23	0,256	0,685	1,319	1,714	2,069	2,500	2,807	3,104	3,485	3,767
24	0,256	0,685	1,318	1,711	2,064	2,492	2,797	3,091	3,467	3,745
25	0,256	0,684	1,316	1,708	2,060	2,485	2,787	3,078	3,450	3,725
26	0,256	0,684	1,315	1,706	2,056	2,479	2,779	3,067	3,435	3,707
27	0,256	0,684	1,314	1,703	2,052	2,473	2,771	3,057	3,421	3,690
28	0,256	0,683	1,313	1,701	2,048	2,467	2,763	3,047	3,408	3,674
29	0,256	0,683	1,311	1,699	2,045	2,462	2,756	3,038	3,396	3,659
30	0,256	0,683	1,310	1,697	2,042	2,457	2,750	3,030	3,385	3,646
40	0,255	0,681	1,303	1,684	2,021	2,423	2,704	2,971	3,307	3,551
60	0,254	0,679	1,296	1,671	2,000	2,390	2,660	2,915	3,232	3,460
120	0,254	0,677	1,289	1,658	1,980	2,358	2,617	2,860	3,160	3,373
~	0,253	0,674	1,282	1,645	1,960	2,326	2,576	2,807	3,090	3,291

Pontos de probabilidade da distribuição t com v graus de liberdade.

Fonte: Box, G. E. P.; Hunter, W. G., e Hunter, J. S., Statistics for experimenters. An introduction to design, data analysis and model building. Nova York, Wiley, 1978. Pearson, E. S. e Hartley, H. O. (eds.), Biometrika tables for statisticians, vol. I, Cambridge University Press (1958). Fisher, R. A. e Yates, F., Statistical tables for Biological, Agricultural and Medical Research, Longman Group Ltd. (1974) - Tabela III. Reproduzida com autorização da John Wiley & Sons, Inc; Biometrika Trustees e Longman Group UK Ltd.

ANEXO D - Carta de aprovação das Indústrias Nucleares do Brasil (INB)

Resende, 12 de março de 2007

À INB – Indústrias Nucleares do Brasil S.A. Rodovia Presidente Dutra, s/Nº, km 330 – Engenheiro Passos 27555-000 - Resende/RJ

A/C: Sr. Renato Vieira da Costa

Ref.: Carta de Autorização das Indústrias Nucleares do Brasil S.A.

Prezado Senhor,

Solicito a autorização das Indústrias Nucleares do Brasil (INB), para a publicação no meio acadêmico dos dados contidos na seguinte dissertação de mestrado:

"Análise da relação custo e produtividade e da eficiência térmica global do processo de secagem de fluoreto de amônio por *spray dryer*", elaborada por Anderson Estevez Omena, da Escola de Engenharia de Lorena da Universidade de São Paulo (EEL-USP).

EMITENTE:

ndusou

ANDERSON ESTEVEZ OMENA Mestrando da EEL-USP

APROVADOR:

RENATO VIEIRA DA COSTA Superintendente de Produção do Combustível SUPRO.N – INB

Renato Vieira da Costa Superintendente de Produção do Combustível